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1. INTRODUCTION

Microfossils are a heterogeneous group of fossils, studied 
in micropaleontology. These, unlike other types of fossils, are 
not grouped according to phylogenetic relationships but 
based on their generally small size (micron to centimeter). 
Microfossils are the most important group among all fossils, 
being extremely useful for dating according to age, correlation 
and paleoenvironmental reconstruction, very important in 
the oil, mining, engineering and environmental industries, 
as well as in general geology. Because they usually occur in 
large numbers in sediments, they are the most abundant 
and most easily accessible fossils. For micropaleontological 
investigations, rock samples must be processed for separating 
microfossils; afterwards, they are microscopically analyzed 
for generic and specific determination.

The calcareous nanoplankton is a major component of 
oceanic phytoplankton. The evolutionary model of this group 
of marine organisms and its current distribution throughout 
the marine world are extremely useful in various fields of 

research, such as: marine geology, biogeochemistry and 
paleontology (Brasier, 1980; Haq & Boersma, 1978).

Since its discovery in the mid-nineteenth century 
(Ehrenberg, 1836), the calcareous nanoplankton has 
been important for paleontological studies (to support 
the evolutionary hypothesis) and biostratigraphy studies 
(for accurate relative dating of marine sedimentary 
successions), being intensively used for paleoecology and 
paleogeographic reconstructions. Because calcareous 
nanoplankton is a group of organisms extant, one of 
the most diverse and widespread in the world of marine 
phytoplankton, it is used for marine biology and geological 
investigations as well as in analyzes and predictions of the 
evolution of the marine environment.

The average size of calcareous nanoplankton is between 
5-15 microns. A more restrictive definition (Tappan, 1980) 
considers that taxa smaller than 2 µm can be classified as 
ultramicroplankton, and those between 2-20 µm belong to 
calcareous nanoplankton. Fossils of calcareous nanoplankton 
are also described as calcareous nannofossils (or simply 
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nannofossils). The term nannoflora was also used for 
describing this group of unicellular algae (Thierstein & Young, 
2004; Melinte, 2004).

The identification and classification of microfossils is the 
main direction of study in the field of micropaleontology. 
Conventionally, paleontologists qualitatively identify and 
classify microfossils based on morphological features, by 
studying micron-sized organisms, i.e., calcareous nannofossils, 
diatoms and radiolarians, or microfossils, such as foraminifers 
and ostracods, under an optical or electron microscope. 
These traditional methods are time consuming and require 
considerable expertise due to the large number and high 
diversity of microfossils. In some cases, paleontologists 
apply methods of geometric morphometry to identify and 
classify fossils (Saraswati & Srinivasan, 2016; Cui et al., 2019). 
However, these methods are not fully automated, and a large 
number of indexes and benchmarks must be defined for 
measurement.

In recent years, machine learning and especially deep 
learning have led to excellent results in the classification 
of microfossils. A deep learning method can implement 
the „end-to-end“ classification procedure, which is more 
objective and not limited to one type of fossil (Brocklehurst 
et al., 2018).

Machine learning models and algorithms can help us 
quickly and easily implement specific image processing 
functionalities. However, building a personalized machine 
learning model or a basic neural network requires a lot of 
resources and a high level of technological expertise. With the 
help of open-source tools, libraries and frameworks that exist 

and are presented herein, one can choose to implement in 
their own software model the best solution for the intelligent 
automatic recognition of microfossil images.

2. ANALYSIS

2.1. tensorflow

TensorFlow is an open-source platform for machine 
learning. It has a comprehensive and flexible ecosystem 
of tools, libraries and community resources, which allows 
researchers to use the latest technologies in ML (Machine 
Learing) and developers to easily build and implement ML-
based applications (https://www.tensorflow.org).

The platform was developed by Google.com in 2015, 
initially for internal use, which was later launched as an open-
source software library gaining much popularity to date.

The name “TensorFlow” comes from the two specific 
programming features:
•	 Tensors, which are multidimensional data arrays;
•	 Data flow graphs, are a kind of neural network that takes 

into consideration the previous states of the system.

TensorFlow is designed on the operations that the data 
flow graphs perform on such data arrays. A compiler XLA, 
which is specific to these graphs, has been added as part of 
the updates to the last versions of TensorFlow, and it allows 
for better performance (Sydorenko, 2021).

Thanks to its extensive library, TensorFlow can be used 
for efficient design of models that can be trained on standard 
datasets. This can significantly save time and resources for 
certain AI projects. 

Fig. 1. Training and deploying an ML model with TensorFlow (after Sydorenko, 2021).
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In addition, given the open-source basis of the tool, 
developed modules are permanently added to the core 
library, enhancing it and thus facilitating the work of ML 
platform developers.

Basically, TensorFlow has a set of features that favorably 
distinguish this software from many of its competitors. First, 
it has auto-differentiation, which was already accessible 
in the first version of the platform. Then there is a tool 
for viewing the model in TensorBoard, which makes this 
software significantly less complicated than some of its 
direct competitors. It also provides some of the best support 
services in the software industry for tools using Python as 
programming language (Sydorenko, 2021).

2.1.1. TensorFlow: Main Features

TensorFlow uses Python, for easy communication between 
software and users but was written in another programming 
language, namely C++ (Fig. 1). This language is one of the most 
powerful existing due to the direct communication through 
the instruction sets with the CPU unit (no need for a support 
framework like .Net or JVM), which is extremely advantageous 
when we talk about the need to train a complex machine 
learning algorithm using TensorFlow.

Due to the fact that TensorFlow allows the use of GPU 
instead of processors to train our ML algorithm, it increases 
the speed of the learning process. This is done by combining 
C ++ with Cuda technology (from Nvidia). Along with this 
comes a first issue in using it: although we can use almost any 
platform from Windows, macOS or Ubuntu Linux to iOS and 
Android in order to build a model using TensorFlow, Cuda has 
certain requirements for package and kernel versions if we 
want to get the best performance.

2.1.2. TensorFlow: How does it work?

TensorFlow is a very easy to use platform for designing, 
learning and implementing the ML algorithm with its main 
characteristics being (Fig. 1):
•	 TensorFlow Serving: a complete data loading system for 

ML algorithms designed for production environments.
•	 TensorFlow Lite: a simplified version of the platform that 

allows you to work with it on mobile devices.
•	 Fast execution: programming environment with an 

intuitive interface that does not build graphics, but 
evaluates operations immediately.

•	 Operations estimation: Prefabricated APIs used for 
training, evaluation, prediction and data export.

•	 Pre-compiled datasets: ready-to-use datasets that can 
be used with TensorFlow, but also with other machine 
learning frameworks (eg Jax).

The list of TensorFlow features listed here is by no means 
complete, but it gives us a general idea of how this platform works.

2.1.3. Advantages TensorFlow
•	 Open source. TensorFlow is free, can be downloaded and 

used without the need to purchase a software license 
or any additional costs (maintenance, support). This 
is probably what makes it so popular combined with 
the size of the ecosystem of TensorFlow tools, software 
libraries and resources.

•	 Platform flexibility. TensorFlow can be used on any 
hardware platform (Fig. 2), be it a processor (CPU), a GPU 
or a TPU using the advantageous features of each. In 
addition, TensorFlow allows you to work in Google Cloud, 
which provides an added benefit of speed and access to all 
parties involved in a single ML project (Sydorenko, 2021).

Fig. 2. Characteristics of TensorFlow (after Sydorenko, 2021).
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•	 Scalability. It easily allows the construction of an incipient 
(test) model and then its expansion as the needs and 
complexity of operations increase.

•	 Allows experimentation. TensorFlow is also flexible in 
terms of designing the model architecture. This is a 
benefit for ML applications involving intelligent image 
recognition

•	 Feedback-based updates. Unlike many other open-source 
codes, TensorFlow is updated based on user feedback. 
For example, TensorFlow 2.0 was created to cover the 
most popular user requests for adjustments and changes. 
Future updates are also possible, making the TensorFlow 
platform an important tool for ongoing AI projects.

•	 Moderation in the use of computational resources 
(computational). TensorFlow’s C ++ base allows more 
flexible use of hardware resources for a variety of tasks 
in machine learning. This speed up the training process 
without the need for excessive computing power.

2.1.4. Disadvantages TensorFlow
•	 Functionality of software updates. The new version of 

TensorFlow 2.0, although built on user feedback, contains 
some challenges in using the new implemented features. 
This makes compatibility between the first version of 
TensorFlow and TensorFlow 2.0 problematic. In most 
cases the algorithms written in the first version may 
require a full change in the newer version of TensorFlow.

•	 Reliability issues. While many may be tempted to 
continue working with the original version of TensorFlow, 
it may be less secure and reliable. There have been quite 
a few cases of memory leaks that have prevented and 
significantly affected the development process.

•	 Syntax complexity. While TensorFlow is built to 
communicate with users on Python, its syntax is somewhat 
different from classic Python and can be confusing. There 
is the possibility to overcome the complexities by using 
TensorFlow superstructures such as Keras which allows a 
simpler approach to building ML models.

•	 Operational instability. Despite its advantages of speed 
and flexibility, TensorFlow is still prone to crash, especially 
for more complex architectures. This can lead to loss of 
work and valuable time spent restarting work sessions.

2.2. opencV

OpenCV (Open-Source Computer Vision Library) is an 
open-source software library built to provide a common 
infrastructure for ML applications comprising over 2500 
ML-optimized algorithms, in particular a comprehensive 
set of both classic and new generation machine learning 
algorithms. These algorithms can be used to detect and 
recognize human faces, identify objects, classify human 
actions into videos, track camera movements, track moving 
objects, extract 3D models of objects, and more. OpenCV has 
a community of over forty - seven thousand users and the 
estimated number of downloads exceeds eighteen million. 

The library is widely used in companies, research groups and 
by government agencies (www.opencv.org/about/).

2.2.1. OpenCV Main Features

OpenCV specializes mainly in image processing, being 
one of the most used libraries in ML and computer vision 
models. Users can perform several processing operations, 
such as histograms, color space conversion, geometric image 
transformations, image filtering, and so on. They can also 
perform resizing and other image processing techniques on 
their images using simple functions.

The main modules of Open CV (which also describe the 
main functionalities) are:
•	 Basic functions - this module covers basic data structures 

such as scalar, point, range, etc., which are used to 
build OpenCV applications. In addition, it includes the 
multidimensional Matrix Array, which is used to store 
images. In the Java library of OpenCV, this module is 
included as a package named org.opencv.core.

•	 Image processing - this module covers various image 
processing operations, such as image filtering, geometric 
image transformations, color space conversion, 
histograms, etc. In the Java library of OpenCV, this module 
is included as a package named org.opencv.imgproc.

•	 characteristics2d - This module includes the concepts 
of detection and description of two-dimensional 
characteristics. In the Java library of OpenCV, this module 
is included as a package named org.opencv.features2d.

•	 Objdetect - This module includes detecting objects and 
instances in predefined classes, such as trees, people, cars, 
animals, etc. In the Java library of OpenCV, this module is 
included as a package named org.opencv.objdetect.

2.2.2. OpenCV How does it works?

OpenCV is a library mainly focused on computer vision 
applications. This is an interdisciplinary field that deals with 
how computers can learn to understand the visualizations of 
the surroundings as close as possible to reality. After achieving 
this conceptual perspective, we move on to automating tasks 
or performing the desired action by the user.

OpenCV API allows setting up a line of learning for ML 
projects in three easy steps:

1. I / O. Upload data from image files, videos, capture devices.

2. Performing feature extraction. OpenCV contains a long 
list of algorithms, so there is no need to implement ad-
ditional ones.

3. Application of machine learning algorithms for decision 
making, recognition and detection of objects.

2.2.3. Advantages OpenCV
•	 A large number of algorithms included: OpenCV 

offers access to over 2,500 classic and state-of-the-art 
algorithms. Using this library, users can perform various 
tasks, such as removing the red-eye effect from images, 
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extracting 3D models of objects, tracking eye movements, 
and so on.

•	 Extensive use: Large companies such as IBM, Google, 
Toyota or startups such as Zeitera and Applied Minds 
use OpenCV for multiple tasks. In this way, users are 
assured that they have access to a library that is used 
by the most prestigious government institutions and 
enterprises in their fields of activity. In the OpenCV 
community, users can ask for help and help other 
developers. This gives developers easy access to library 
information and code snippets developed by other 
members of the community.

•	 Efficient solution: OpenCV provides algorithmic efficiency 
mainly for real-time instruction processing. Moreover, 
it has been designed in a way that allows it to take 
advantage of GPU hardware acceleration and multi-core 
CPU systems.

2.2.4. Disadvantages OpenCV
•	 Reduced learning capabilities (training) - OpenCV is 

a library of pre-programmed algorithms that can only 
be applied to a deep learning model that has already 
gone through the training stage in detecting objects of 
interest.

•	 Operational instability – crashes and freezes can occur 
quite often depending on the complexity of the problem 
addressed and the hardware capabilities.

•	 Poor integration with other applications - due to the fact 
that OpenCV has its own extensive library, conflicts may 
arise in the operation with other external applications if 
their integration is desired.

2.3. Keras

Keras is an open-source Python tool library for building 
deep learning models. It is an excellent option because it 
streamlines the construction of a deep learning model from 
scratch. Keras is simple to use and ideal for fast modeling of 
many types of neural networks.

TensorFlow was used to build the library, which is now 
fully embedded in it. This implies that we can design the 
Keras deep learning model, which has a much easier to 
use interface, and then integrate a specific TensorFlow 
functionality or feature into this model (Fawad Malik, 2021).

2.3.1. Keras Main Features

The main features of Keras relevant for this article are:
•	 Modularity: Keras is modular. If we consider a model in 

the form of a graph or a sequence, Keras allows us to 
save the model we are working on to be used in other 
applications using the save () method.

•	 Predefined datasets: Keras contains large predefined 
datasets. We can use this dataset to import and upload 
it directly (example: IMDB DATA contains approximately 
25,000 movie reviews). This dataset contains binary 
numbers (0 and 1) to review each movie. 0 represents the 

negative sentiment and 1 represents the positive feeling. 
We can upload IMDB DATA as:

from keras.datasets import imdb 
 (x_train, y_train), (x_test, y_test) = imdb.load_data()

•	 Assessment and prediction: Keras contain the methods 
evaluated() and predict(). These methods can use the 
NumPy dataset. After testing the data, the result is 
evaluated.

•	 Pre-trained models: Keras contains a number of pre-
trained models. These templates can be imported from 
keras.applications. They are useful for extracting and 
fine-tuning of characteristics. Keras.application is a 
module that contains weights (model weights are all 
the parameters including trainable and non-trainable of 
the model which are in turn all the parameters used in 
the layers of the model) for image classification such as 
VGG16, VGG19, Xception etc.

•	 Layers in Keras: There are many layers and parameters 
in Keras. All Keras layers contain a number of methods. 
These layers are useful for building, training, configuring 
data. The dense layer is beneficial for the implementation 
of operations. “Flatten” is used to reduce the flow of data 
input. The input is used to initiate a Keras tensor.

keras.layers.Reshape(target_shape) 
 kera.layers.Flatten(data_format=none) 
 keras.layers.Dropout(rate, shape_noise=none, seed=none)

•	 We can get the result of an intermediate layer: Keras has 
an essential advantage when used in ML models allowing 
us to view the result in the middle of a layer. To get 
intermediate results, we can simply create a new layer in 
which to store the viewed result.

•	 Keras is the native Python library: It uses all the known 
concepts from Python so that the knowledge of this 
programming language makes the development of an 
ML model in Keras very simple.

•	 Data preprocessing: Keras offers us several functions for 
data preprocessing. ImageDataGenerator is one such 
method. It can be imported by:

from keras.preprocessing.image import ImageDataGenerator

This function helps resizing images, changing the degree 
of tilt - rotation, and changing the height and width of the 
image.

2.3.2. Keras How does it works?

The diagram below shows the main steps in building a 
model in Keras (Fig. 3):
•	 Defining a neural network: in this step, we define the 

different layers in our model and the connections 
between them. Keras has two main types of models: 
sequential models and functional models. We choose 
the type of model we want and then define the data flow 
between them.
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•	 Compiling the network: compiling a sequence of code 
means converting it into a suitable form for the machine 
to understand. In Keras, the model.compile () method 
performs this function. To compile the model, we define 
the loss function that calculates the losses in our model, 
the optimizer that reduces the loss, and the measurement 
that is used to find the accuracy of our model.

•	 Network adaptation: in this stage we integrate the model 
to our data after compilation. It is used to train the model 
on our data.

•	 Network evaluation: After adapting our model, we need 
to evaluate the errors

•	 Making predictions: we use model.predict() to make 
predictions using our model on new data, different from 
those on which it was trained.

2.3.3. Advantages Keras
•	 Simplicity: Keras is very simple and easy to use. It is an 

easy-to-use API with an easy-to-learn and coding function. 
It is very easy to learn the basics of Deep Learning using 
Keras. The functions in Keras are very simple making it 
easy to design the desired neural network models.

•	 Backend support: Keras does not work with low level 
computational models - it works as an interface for 
TensorFlow, Theano and Microsoft CNTK, these are just 
a few libraries that Keras uses for backend support - this 
gives the user the opportunity to choose a compliant 
backend requirement.

•	 Pre-learned models: Keras offers many pre-learned 
models, which help users to simplify their tasks. These 
models allow the user to make fine adjustments, feature 
extraction and prediction calculations.

•	 Fast experimentation: Keras is built to simplify user 
tasks. Therefore, it has the ability to build neural network 
models using as few lines of code as possible. It provides 
fairly good support for features that allow users to deploy 
models quickly.

•	 Extensive user community and “calibre” documentation: 
Keras has a large user community and is an open-source 
platform. This community allows researchers to publish 
their code and experiment details to be useful for other 
users. It usually answers all questions asked by users. The 
“calibre” documentation provides easy-to-use support for 
installing and configuring Keras and contains every detail 
of the features documented as well as tutorials for using 
them.

2.3.4. Disadvantages Keras
•	 Uncomplete features: There are some features in Keras for 

which there is room for improvement. It lacks some types 
of pre-learned models for use. Keras does not support 
dynamic chart creation functions.

•	 Inefficient error management: errors given by the Keras 
library do not provide efficient error management. There 
is a need to make errors easier to identify. It is quite 
complicated to find the main cause in the occurrence of 
an error, debugging is difficult to perform.

•	 Low level API: Keras generates low level errors quite 
often. The reason for this is that there are certain low-
level features and operations that Keras is not capable 
of running as a front end for TensorFlow, Theano and 
Microsoft CNTK.

2.4. pytorch

PyTorch is an open-source machine learning system based 
on the Torch library used for applications such as computer 
vision and language processing developed mainly by Meta 
AI. It is a free and open-source software released under the 
modified BSD license. Although the Python interface is more 
refined and is the main point of development, PyTorch also 
has a C ++ interface (Wikipedia, “Pytorch”)

A number of deep learning programs are built on 
PyTorch, including Tesla Autopilot, Uber‘s Pyro, Hugging 
Face‘s Transformers, PyTorch Lightning and Catalyst.

2.4.1. PyTorch Main Features

The two main features of PyTorch are:
•	 Tensor calculation (similar to NumPy) with consolidated 

support for GPU (Graphical Processing Unit) acceleration
•	 Automatic differentiation for the creation and training of 

deep neural networks

In PyTorch, modules are used to represent neural 
networks.

These are presented below.

1. Autograd

The autograde module is PyTorch‘s automatic 
differentiation engine, which helps to calculate gradients 
quickly.

2. Optim

The Optim module is a package of pre-written 
optimization algorithms used to build neural networks.

Fig. 3. Building a model in Keras.
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3. nn

The nn module includes various classes that help build 
neural network models. All modules in PyTorch are subclasses 
of the module nn.

Features of PyTorch workflow:

a. Dynamic calculation graph in Pytorch:

The calculation graphs in PyTorch allow the framework 
to calculate the gradient values   for the constructed neural 
networks. PyTorch uses dynamic graphs. The graph is defined 
indirectly using operator overload. Dynamic graphs are 
more flexible than static graphs, in which users can make 
interleaved constructions and evaluate graphs. These are 
easy to troubleshoot because they allow line-by-line code 
execution. Finding problems in model code is much easier 
with PyTorch dynamic graphics - an important feature that 
makes PyTorch a popular choice in the industry.

PyTorch computational graphs are rebuilt from scratch 
at each iteration, allowing the use of random Python control 
flow statements, which can affect the overall shape and size 
of the graph each time an iteration occurs.

b. Uploading data

Working with large data sets requires that all data be 
loaded into memory in a single operation. This causes the 
memory to overload and the programs to run slowly. In 
addition, it is difficult to keep the data sample processing 
code. PyTorch offers two data primitives - DataLoader and 
Dataset - to parallelize data loading with automatic batches 
and better code readability and modularity. DataSet and 
DataLoader allow users to use their own data as well as 
preloaded data sets. While Dataset hosts those samples and 
labels, DataLoader combines the dataset and sampler by 
deploying an iteration around the dataset so that users can 
easily access predefined examples.

2.4.2. PyTorch How does it works?

PyTorch uses a technique called automatic differentiation 
that numerically evaluates the derivative of a function. 
Automatic differentiation calculates back passes in neural 
networks. In neural network training, weights are randomly 
initialized to numbers that are close to zero, but not zero. 
Shifting backwards is the process by which these weights 
are adjusted from right to left, and a shift forward is reversed 
(from left to right).

torch.autograd is the library that supports automatic 
differentiation in PyTorch. The main class of this package 
is torch.Tensor. To track all operations on it, we must set. 
requires_grad to True. To calculate all gradients, we must 
call. backward () method. The gradient for this tensor will be 
accumulated in the .grad attribute.

If we want to detach a tensor from the calculation history, 
we call the .detach () function. This will also prevent future 
calculations on the tensor from being tracked. Another way 

to prevent history tracking is by wrapping the code with 
torch.no_grad ():

The Tensor and Function classes are interconnected to 
build an acyclic graph that encodes a complete calculation 
history. The grad_fn attribute of the tensor refers to the 
function that created the tensor. To calculate derivatives, 
we must call.backward() on a tensor. If the tensor contains a 
element we do not need to specify any parameters for the 
back function. If the tensor contains more than one element, 
we specify a gradient that is a tensor of a shape appropriate 
to the needs of the operations to be performed.

For example, we create two tensors, one with requires_
grad as True and the other as False. We will then use these 
two tensors to perform addition and summation operations. 
After that, we will calculate the gradient of one of the tensors:

a = torch.tensor([3.0, 2.0], requires_grad=True)
b = torch.tensor([4.0, 7.0])
ab_sum = a + b
ab_sum
ab_res = (ab_sum*8).sum()
ab_res.backward()
ab_res
a.grad

The return value of calling. grad on b is null because we 
did not set its requirements_ grad to True.

2.4.3. Advantages PyTorch

The main difference between PyTorch and other models, 
such as TensorFlow, is the support for dynamic neural 
networks. TensorFlow treats the neural network as a static 
object; if we want to change the behavior of the model we 
have to start from scratch. With PyTorch, the neural network 
can be adjusted on the fly while running, making it easier to 
optimize the model.

Another major difference is the way the code is debugged. 
Effective troubleshooting with TensorFlow requires a special 
tool that allows us to examine how network nodes do their 
calculations at every step. PyTorch can be debugged using 
one of the many widely available Python debugging tools.

The last major advantage of PyTorch is the ease with 
which it can distribute computing work across multiple CPU 
or GPU cores. Although this parallelism can be achieved in 
other machine learning tools, PyTorch is much easier to 
operate from this point of view.

2.4.4. Disadvantages PyTorch

Despite its advantages, PyTorch has some shortcomings. 
An official version 1.0 has not yet been released, so it is 
not stable enough for production work, while TensorFlow 
and other similar models have more official variants and 
therefore better support, more detailed documentation and 
communities. of older users. TensorFlow also comes with 
Tensorboard, a highly capable visualization tool for building 
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the model graph (a “map” of the neural network) and various 
data representations that specialize in machine learning. 
PyTorch does not have that yet, so developers will need to 
rely on one of the many existing tools for viewing Python 
data.

3. CONCLUSIONS
The analysis made on the most popular and advanced 

libraries for neural networks reveal that the best candidates 
for a ML model could be in fact a combination of two: Keras 
and TensorFlow that can be used with succes to build a 
neural network for the automatic intelligent recognition of 
microfossils.

TensorFlow is an end-to-end open-source platform, a 
library for multiple machine learning tasks, while Keras is a 
high-level neural network library running on TensorFlow. 
Both provide high-level APIs used to easily build and shape 
models, but Keras is easier to use because it has built-in 
Python.

TensorFlow is generally used when working with large 
data sets used to detect objects with excellent success rates 

and high performance. TensorFlow runs on Linux, MacOS, 
Windows and Android. The framework was developed by 
Google Brain and is currently used for Google‘s research and 
production needs.

Keras works as a cover for the TensorFlow frame. Thus, we 
can define a model with the Keras interface, which is easier 
to use, then we will access TensorFlow when we need to use 
a feature that Keras does not have or we want to use specific 
TensorFlow features by placing the TensorFlow code directly 
in the Keras training model.
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