
1Geo-Eco-Marina 28/2022

1. INTRODUCTION

Microfossils are a heterogeneous group of fossils, studied
in micropaleontology. These, unlike other types of fossils, are
not grouped according to phylogenetic relationships but
based on their generally small size (micron to centimeter).
Microfossils are the most important group among all fossils,
being extremely useful for dating according to age, correlation
and paleoenvironmental reconstruction, very important in
the oil, mining, engineering and environmental industries,
as well as in general geology. Because they usually occur in
large numbers in sediments, they are the most abundant
and most easily accessible fossils. For micropaleontological
investigations, rock samples must be processed for separating
microfossils; afterwards, they are microscopically analyzed
for generic and specific determination.

The calcareous nanoplankton is a major component of
oceanic phytoplankton. The evolutionary model of this group
of marine organisms and its current distribution throughout
the marine world are extremely useful in various fields of

research, such as: marine geology, biogeochemistry and
paleontology (Brasier, 1980; Haq & Boersma, 1978).

Since its discovery in the mid-nineteenth century
(Ehrenberg, 1836), the calcareous nanoplankton has
been important for paleontological studies (to support
the evolutionary hypothesis) and biostratigraphy studies
(for accurate relative dating of marine sedimentary
successions), being intensively used for paleoecology and
paleogeographic reconstructions. Because calcareous
nanoplankton is a group of organisms extant, one of
the most diverse and widespread in the world of marine
phytoplankton, it is used for marine biology and geological
investigations as well as in analyzes and predictions of the
evolution of the marine environment.

The average size of calcareous nanoplankton is between
5-15 microns. A more restrictive definition (Tappan, 1980)
considers that taxa smaller than 2 µm can be classified as
ultramicroplankton, and those between 2-20 µm belong to
calcareous nanoplankton. Fossils of calcareous nanoplankton
are also described as calcareous nannofossils (or simply

AnAlysis of the most populAr librAries
And plAtforms thAt cAn be used to creAte
A model for the intelligent recognition

of microfossils
Cristian Cudalbu1, Eliza aNTON1, Constantin laZaR1

1 National Institute of Marine Geology and Geo-Ecology (GeoEcoMar), 23-25 Dimitrie Onciul St., 024053 Bucharest, Romania
e-mail: c.cudalbu@geoecomar.ro, antoneliza@geoecomar.ro, lazar.constantin@geoecomar.ro

DOI: 10.xxxx

Abstract. This paper presents an analysis of the most common software tools (libraries and platforms) used in the field on AI image processing by building
deep learning models. The most useful characteristics for each tool are analyzed for providing a suitable candidate for a deep learning model in the field
of intelligent image recognition for microfossils.

Key words: machine learning, image recognition, microfossils

2 Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

nannofossils). The term nannoflora was also used for
describing this group of unicellular algae (Thierstein & Young,
2004; Melinte, 2004).

The identification and classification of microfossils is the
main direction of study in the field of micropaleontology.
Conventionally, paleontologists qualitatively identify and
classify microfossils based on morphological features, by
studying micron-sized organisms, i.e., calcareous nannofossils,
diatoms and radiolarians, or microfossils, such as foraminifers
and ostracods, under an optical or electron microscope.
These traditional methods are time consuming and require
considerable expertise due to the large number and high
diversity of microfossils. In some cases, paleontologists
apply methods of geometric morphometry to identify and
classify fossils (Saraswati & Srinivasan, 2016; Cui et al., 2019).
However, these methods are not fully automated, and a large
number of indexes and benchmarks must be defined for
measurement.

In recent years, machine learning and especially deep
learning have led to excellent results in the classification
of microfossils. A deep learning method can implement
the „end-to-end“ classification procedure, which is more
objective and not limited to one type of fossil (Brocklehurst
et al., 2018).

Machine learning models and algorithms can help us
quickly and easily implement specific image processing
functionalities. However, building a personalized machine
learning model or a basic neural network requires a lot of
resources and a high level of technological expertise. With the
help of open-source tools, libraries and frameworks that exist

and are presented herein, one can choose to implement in
their own software model the best solution for the intelligent
automatic recognition of microfossil images.

2. ANALYSIS

2.1. tensorflow

TensorFlow is an open-source platform for machine
learning. It has a comprehensive and flexible ecosystem
of tools, libraries and community resources, which allows
researchers to use the latest technologies in ML (Machine
Learing) and developers to easily build and implement ML-
based applications (https://www.tensorflow.org).

The platform was developed by Google.com in 2015,
initially for internal use, which was later launched as an open-
source software library gaining much popularity to date.

The name “TensorFlow” comes from the two specific
programming features:
•	 Tensors, which are multidimensional data arrays;
•	 Data flow graphs, are a kind of neural network that takes

into consideration the previous states of the system.

TensorFlow is designed on the operations that the data
flow graphs perform on such data arrays. A compiler XLA,
which is specific to these graphs, has been added as part of
the updates to the last versions of TensorFlow, and it allows
for better performance (Sydorenko, 2021).

Thanks to its extensive library, TensorFlow can be used
for efficient design of models that can be trained on standard
datasets. This can significantly save time and resources for
certain AI projects.

Fig. 1. Training and deploying an ML model with TensorFlow (after Sydorenko, 2021).

3Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

In addition, given the open-source basis of the tool,
developed modules are permanently added to the core
library, enhancing it and thus facilitating the work of ML
platform developers.

Basically, TensorFlow has a set of features that favorably
distinguish this software from many of its competitors. First,
it has auto-differentiation, which was already accessible
in the first version of the platform. Then there is a tool
for viewing the model in TensorBoard, which makes this
software significantly less complicated than some of its
direct competitors. It also provides some of the best support
services in the software industry for tools using Python as
programming language (Sydorenko, 2021).

2.1.1. TensorFlow: Main Features

TensorFlow uses Python, for easy communication between
software and users but was written in another programming
language, namely C++ (Fig. 1). This language is one of the most
powerful existing due to the direct communication through
the instruction sets with the CPU unit (no need for a support
framework like .Net or JVM), which is extremely advantageous
when we talk about the need to train a complex machine
learning algorithm using TensorFlow.

Due to the fact that TensorFlow allows the use of GPU
instead of processors to train our ML algorithm, it increases
the speed of the learning process. This is done by combining
C ++ with Cuda technology (from Nvidia). Along with this
comes a first issue in using it: although we can use almost any
platform from Windows, macOS or Ubuntu Linux to iOS and
Android in order to build a model using TensorFlow, Cuda has
certain requirements for package and kernel versions if we
want to get the best performance.

2.1.2. TensorFlow: How does it work?

TensorFlow is a very easy to use platform for designing,
learning and implementing the ML algorithm with its main
characteristics being (Fig. 1):
•	 TensorFlow Serving: a complete data loading system for

ML algorithms designed for production environments.
•	 TensorFlow Lite: a simplified version of the platform that

allows you to work with it on mobile devices.
•	 Fast execution: programming environment with an

intuitive interface that does not build graphics, but
evaluates operations immediately.

•	 Operations estimation: Prefabricated APIs used for
training, evaluation, prediction and data export.

•	 Pre-compiled datasets: ready-to-use datasets that can
be used with TensorFlow, but also with other machine
learning frameworks (eg Jax).

The list of TensorFlow features listed here is by no means
complete, but it gives us a general idea of how this platform works.

2.1.3. Advantages TensorFlow
•	 Open source. TensorFlow is free, can be downloaded and

used without the need to purchase a software license
or any additional costs (maintenance, support). This
is probably what makes it so popular combined with
the size of the ecosystem of TensorFlow tools, software
libraries and resources.

•	 Platform flexibility. TensorFlow can be used on any
hardware platform (Fig. 2), be it a processor (CPU), a GPU
or a TPU using the advantageous features of each. In
addition, TensorFlow allows you to work in Google Cloud,
which provides an added benefit of speed and access to all
parties involved in a single ML project (Sydorenko, 2021).

Fig. 2. Characteristics of TensorFlow (after Sydorenko, 2021).

4 Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

•	 Scalability. It easily allows the construction of an incipient
(test) model and then its expansion as the needs and
complexity of operations increase.

•	 Allows experimentation. TensorFlow is also flexible in
terms of designing the model architecture. This is a
benefit for ML applications involving intelligent image
recognition

•	 Feedback-based updates. Unlike many other open-source
codes, TensorFlow is updated based on user feedback.
For example, TensorFlow 2.0 was created to cover the
most popular user requests for adjustments and changes.
Future updates are also possible, making the TensorFlow
platform an important tool for ongoing AI projects.

•	 Moderation in the use of computational resources
(computational). TensorFlow’s C ++ base allows more
flexible use of hardware resources for a variety of tasks
in machine learning. This speed up the training process
without the need for excessive computing power.

2.1.4. Disadvantages TensorFlow
•	 Functionality of software updates. The new version of

TensorFlow 2.0, although built on user feedback, contains
some challenges in using the new implemented features.
This makes compatibility between the first version of
TensorFlow and TensorFlow 2.0 problematic. In most
cases the algorithms written in the first version may
require a full change in the newer version of TensorFlow.

•	 Reliability issues. While many may be tempted to
continue working with the original version of TensorFlow,
it may be less secure and reliable. There have been quite
a few cases of memory leaks that have prevented and
significantly affected the development process.

•	 Syntax complexity. While TensorFlow is built to
communicate with users on Python, its syntax is somewhat
different from classic Python and can be confusing. There
is the possibility to overcome the complexities by using
TensorFlow superstructures such as Keras which allows a
simpler approach to building ML models.

•	 Operational instability. Despite its advantages of speed
and flexibility, TensorFlow is still prone to crash, especially
for more complex architectures. This can lead to loss of
work and valuable time spent restarting work sessions.

2.2. opencV

OpenCV (Open-Source Computer Vision Library) is an
open-source software library built to provide a common
infrastructure for ML applications comprising over 2500
ML-optimized algorithms, in particular a comprehensive
set of both classic and new generation machine learning
algorithms. These algorithms can be used to detect and
recognize human faces, identify objects, classify human
actions into videos, track camera movements, track moving
objects, extract 3D models of objects, and more. OpenCV has
a community of over forty - seven thousand users and the
estimated number of downloads exceeds eighteen million.

The library is widely used in companies, research groups and
by government agencies (www.opencv.org/about/).

2.2.1. OpenCV Main Features

OpenCV specializes mainly in image processing, being
one of the most used libraries in ML and computer vision
models. Users can perform several processing operations,
such as histograms, color space conversion, geometric image
transformations, image filtering, and so on. They can also
perform resizing and other image processing techniques on
their images using simple functions.

The main modules of Open CV (which also describe the
main functionalities) are:
•	 Basic functions - this module covers basic data structures

such as scalar, point, range, etc., which are used to
build OpenCV applications. In addition, it includes the
multidimensional Matrix Array, which is used to store
images. In the Java library of OpenCV, this module is
included as a package named org.opencv.core.

•	 Image processing - this module covers various image
processing operations, such as image filtering, geometric
image transformations, color space conversion,
histograms, etc. In the Java library of OpenCV, this module
is included as a package named org.opencv.imgproc.

•	 characteristics2d - This module includes the concepts
of detection and description of two-dimensional
characteristics. In the Java library of OpenCV, this module
is included as a package named org.opencv.features2d.

•	 Objdetect - This module includes detecting objects and
instances in predefined classes, such as trees, people, cars,
animals, etc. In the Java library of OpenCV, this module is
included as a package named org.opencv.objdetect.

2.2.2. OpenCV How does it works?

OpenCV is a library mainly focused on computer vision
applications. This is an interdisciplinary field that deals with
how computers can learn to understand the visualizations of
the surroundings as close as possible to reality. After achieving
this conceptual perspective, we move on to automating tasks
or performing the desired action by the user.

OpenCV API allows setting up a line of learning for ML
projects in three easy steps:

1. I / O. Upload data from image files, videos, capture devices.

2. Performing feature extraction. OpenCV contains a long
list of algorithms, so there is no need to implement ad-
ditional ones.

3. Application of machine learning algorithms for decision
making, recognition and detection of objects.

2.2.3. Advantages OpenCV
•	 A large number of algorithms included: OpenCV

offers access to over 2,500 classic and state-of-the-art
algorithms. Using this library, users can perform various
tasks, such as removing the red-eye effect from images,

5Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

extracting 3D models of objects, tracking eye movements,
and so on.

•	 Extensive use: Large companies such as IBM, Google,
Toyota or startups such as Zeitera and Applied Minds
use OpenCV for multiple tasks. In this way, users are
assured that they have access to a library that is used
by the most prestigious government institutions and
enterprises in their fields of activity. In the OpenCV
community, users can ask for help and help other
developers. This gives developers easy access to library
information and code snippets developed by other
members of the community.

•	 Efficient solution: OpenCV provides algorithmic efficiency
mainly for real-time instruction processing. Moreover,
it has been designed in a way that allows it to take
advantage of GPU hardware acceleration and multi-core
CPU systems.

2.2.4. Disadvantages OpenCV
•	 Reduced learning capabilities (training) - OpenCV is

a library of pre-programmed algorithms that can only
be applied to a deep learning model that has already
gone through the training stage in detecting objects of
interest.

•	 Operational instability – crashes and freezes can occur
quite often depending on the complexity of the problem
addressed and the hardware capabilities.

•	 Poor integration with other applications - due to the fact
that OpenCV has its own extensive library, conflicts may
arise in the operation with other external applications if
their integration is desired.

2.3. Keras

Keras is an open-source Python tool library for building
deep learning models. It is an excellent option because it
streamlines the construction of a deep learning model from
scratch. Keras is simple to use and ideal for fast modeling of
many types of neural networks.

TensorFlow was used to build the library, which is now
fully embedded in it. This implies that we can design the
Keras deep learning model, which has a much easier to
use interface, and then integrate a specific TensorFlow
functionality or feature into this model (Fawad Malik, 2021).

2.3.1. Keras Main Features

The main features of Keras relevant for this article are:
•	 Modularity: Keras is modular. If we consider a model in

the form of a graph or a sequence, Keras allows us to
save the model we are working on to be used in other
applications using the save () method.

•	 Predefined datasets: Keras contains large predefined
datasets. We can use this dataset to import and upload
it directly (example: IMDB DATA contains approximately
25,000 movie reviews). This dataset contains binary
numbers (0 and 1) to review each movie. 0 represents the

negative sentiment and 1 represents the positive feeling.
We can upload IMDB DATA as:

from keras.datasets import imdb
 (x_train, y_train), (x_test, y_test) = imdb.load_data()

•	 Assessment and prediction: Keras contain the methods
evaluated() and predict(). These methods can use the
NumPy dataset. After testing the data, the result is
evaluated.

•	 Pre-trained models: Keras contains a number of pre-
trained models. These templates can be imported from
keras.applications. They are useful for extracting and
fine-tuning of characteristics. Keras.application is a
module that contains weights (model weights are all
the parameters including trainable and non-trainable of
the model which are in turn all the parameters used in
the layers of the model) for image classification such as
VGG16, VGG19, Xception etc.

•	 Layers in Keras: There are many layers and parameters
in Keras. All Keras layers contain a number of methods.
These layers are useful for building, training, configuring
data. The dense layer is beneficial for the implementation
of operations. “Flatten” is used to reduce the flow of data
input. The input is used to initiate a Keras tensor.

keras.layers.Reshape(target_shape)
 kera.layers.Flatten(data_format=none)
 keras.layers.Dropout(rate, shape_noise=none, seed=none)

•	 We can get the result of an intermediate layer: Keras has
an essential advantage when used in ML models allowing
us to view the result in the middle of a layer. To get
intermediate results, we can simply create a new layer in
which to store the viewed result.

•	 Keras is the native Python library: It uses all the known
concepts from Python so that the knowledge of this
programming language makes the development of an
ML model in Keras very simple.

•	 Data preprocessing: Keras offers us several functions for
data preprocessing. ImageDataGenerator is one such
method. It can be imported by:

from keras.preprocessing.image import ImageDataGenerator

This function helps resizing images, changing the degree
of tilt - rotation, and changing the height and width of the
image.

2.3.2. Keras How does it works?

The diagram below shows the main steps in building a
model in Keras (Fig. 3):
•	 Defining a neural network: in this step, we define the

different layers in our model and the connections
between them. Keras has two main types of models:
sequential models and functional models. We choose
the type of model we want and then define the data flow
between them.

6 Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

•	 Compiling the network: compiling a sequence of code
means converting it into a suitable form for the machine
to understand. In Keras, the model.compile () method
performs this function. To compile the model, we define
the loss function that calculates the losses in our model,
the optimizer that reduces the loss, and the measurement
that is used to find the accuracy of our model.

•	 Network adaptation: in this stage we integrate the model
to our data after compilation. It is used to train the model
on our data.

•	 Network evaluation: After adapting our model, we need
to evaluate the errors

•	 Making predictions: we use model.predict() to make
predictions using our model on new data, different from
those on which it was trained.

2.3.3. Advantages Keras
•	 Simplicity: Keras is very simple and easy to use. It is an

easy-to-use API with an easy-to-learn and coding function.
It is very easy to learn the basics of Deep Learning using
Keras. The functions in Keras are very simple making it
easy to design the desired neural network models.

•	 Backend support: Keras does not work with low level
computational models - it works as an interface for
TensorFlow, Theano and Microsoft CNTK, these are just
a few libraries that Keras uses for backend support - this
gives the user the opportunity to choose a compliant
backend requirement.

•	 Pre-learned models: Keras offers many pre-learned
models, which help users to simplify their tasks. These
models allow the user to make fine adjustments, feature
extraction and prediction calculations.

•	 Fast experimentation: Keras is built to simplify user
tasks. Therefore, it has the ability to build neural network
models using as few lines of code as possible. It provides
fairly good support for features that allow users to deploy
models quickly.

•	 Extensive user community and “calibre” documentation:
Keras has a large user community and is an open-source
platform. This community allows researchers to publish
their code and experiment details to be useful for other
users. It usually answers all questions asked by users. The
“calibre” documentation provides easy-to-use support for
installing and configuring Keras and contains every detail
of the features documented as well as tutorials for using
them.

2.3.4. Disadvantages Keras
•	 Uncomplete features: There are some features in Keras for

which there is room for improvement. It lacks some types
of pre-learned models for use. Keras does not support
dynamic chart creation functions.

•	 Inefficient error management: errors given by the Keras
library do not provide efficient error management. There
is a need to make errors easier to identify. It is quite
complicated to find the main cause in the occurrence of
an error, debugging is difficult to perform.

•	 Low level API: Keras generates low level errors quite
often. The reason for this is that there are certain low-
level features and operations that Keras is not capable
of running as a front end for TensorFlow, Theano and
Microsoft CNTK.

2.4. pytorch

PyTorch is an open-source machine learning system based
on the Torch library used for applications such as computer
vision and language processing developed mainly by Meta
AI. It is a free and open-source software released under the
modified BSD license. Although the Python interface is more
refined and is the main point of development, PyTorch also
has a C ++ interface (Wikipedia, “Pytorch”)

A number of deep learning programs are built on
PyTorch, including Tesla Autopilot, Uber‘s Pyro, Hugging
Face‘s Transformers, PyTorch Lightning and Catalyst.

2.4.1. PyTorch Main Features

The two main features of PyTorch are:
•	 Tensor calculation (similar to NumPy) with consolidated

support for GPU (Graphical Processing Unit) acceleration
•	 Automatic differentiation for the creation and training of

deep neural networks

In PyTorch, modules are used to represent neural
networks.

These are presented below.

1. Autograd

The autograde module is PyTorch‘s automatic
differentiation engine, which helps to calculate gradients
quickly.

2. Optim

The Optim module is a package of pre-written
optimization algorithms used to build neural networks.

Fig. 3. Building a model in Keras.

7Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

3. nn

The nn module includes various classes that help build
neural network models. All modules in PyTorch are subclasses
of the module nn.

Features of PyTorch workflow:

a. Dynamic calculation graph in Pytorch:

The calculation graphs in PyTorch allow the framework
to calculate the gradient values for the constructed neural
networks. PyTorch uses dynamic graphs. The graph is defined
indirectly using operator overload. Dynamic graphs are
more flexible than static graphs, in which users can make
interleaved constructions and evaluate graphs. These are
easy to troubleshoot because they allow line-by-line code
execution. Finding problems in model code is much easier
with PyTorch dynamic graphics - an important feature that
makes PyTorch a popular choice in the industry.

PyTorch computational graphs are rebuilt from scratch
at each iteration, allowing the use of random Python control
flow statements, which can affect the overall shape and size
of the graph each time an iteration occurs.

b. Uploading data

Working with large data sets requires that all data be
loaded into memory in a single operation. This causes the
memory to overload and the programs to run slowly. In
addition, it is difficult to keep the data sample processing
code. PyTorch offers two data primitives - DataLoader and
Dataset - to parallelize data loading with automatic batches
and better code readability and modularity. DataSet and
DataLoader allow users to use their own data as well as
preloaded data sets. While Dataset hosts those samples and
labels, DataLoader combines the dataset and sampler by
deploying an iteration around the dataset so that users can
easily access predefined examples.

2.4.2. PyTorch How does it works?

PyTorch uses a technique called automatic differentiation
that numerically evaluates the derivative of a function.
Automatic differentiation calculates back passes in neural
networks. In neural network training, weights are randomly
initialized to numbers that are close to zero, but not zero.
Shifting backwards is the process by which these weights
are adjusted from right to left, and a shift forward is reversed
(from left to right).

torch.autograd is the library that supports automatic
differentiation in PyTorch. The main class of this package
is torch.Tensor. To track all operations on it, we must set.
requires_grad to True. To calculate all gradients, we must
call. backward () method. The gradient for this tensor will be
accumulated in the .grad attribute.

If we want to detach a tensor from the calculation history,
we call the .detach () function. This will also prevent future
calculations on the tensor from being tracked. Another way

to prevent history tracking is by wrapping the code with
torch.no_grad ():

The Tensor and Function classes are interconnected to
build an acyclic graph that encodes a complete calculation
history. The grad_fn attribute of the tensor refers to the
function that created the tensor. To calculate derivatives,
we must call.backward() on a tensor. If the tensor contains a
element we do not need to specify any parameters for the
back function. If the tensor contains more than one element,
we specify a gradient that is a tensor of a shape appropriate
to the needs of the operations to be performed.

For example, we create two tensors, one with requires_
grad as True and the other as False. We will then use these
two tensors to perform addition and summation operations.
After that, we will calculate the gradient of one of the tensors:

a = torch.tensor([3.0, 2.0], requires_grad=True)
b = torch.tensor([4.0, 7.0])
ab_sum = a + b
ab_sum
ab_res = (ab_sum*8).sum()
ab_res.backward()
ab_res
a.grad

The return value of calling. grad on b is null because we
did not set its requirements_ grad to True.

2.4.3. Advantages PyTorch

The main difference between PyTorch and other models,
such as TensorFlow, is the support for dynamic neural
networks. TensorFlow treats the neural network as a static
object; if we want to change the behavior of the model we
have to start from scratch. With PyTorch, the neural network
can be adjusted on the fly while running, making it easier to
optimize the model.

Another major difference is the way the code is debugged.
Effective troubleshooting with TensorFlow requires a special
tool that allows us to examine how network nodes do their
calculations at every step. PyTorch can be debugged using
one of the many widely available Python debugging tools.

The last major advantage of PyTorch is the ease with
which it can distribute computing work across multiple CPU
or GPU cores. Although this parallelism can be achieved in
other machine learning tools, PyTorch is much easier to
operate from this point of view.

2.4.4. Disadvantages PyTorch

Despite its advantages, PyTorch has some shortcomings.
An official version 1.0 has not yet been released, so it is
not stable enough for production work, while TensorFlow
and other similar models have more official variants and
therefore better support, more detailed documentation and
communities. of older users. TensorFlow also comes with
Tensorboard, a highly capable visualization tool for building

8 Geo-Eco-Marina 28/2022

Cristian Cudalbu, Eliza Anton, Constantin Lazar – Analysis of the most popular libraries and platforms that can be used to create a model for the intelligent recognition of microfossils

the model graph (a “map” of the neural network) and various
data representations that specialize in machine learning.
PyTorch does not have that yet, so developers will need to
rely on one of the many existing tools for viewing Python
data.

3. CONCLUSIONS
The analysis made on the most popular and advanced

libraries for neural networks reveal that the best candidates
for a ML model could be in fact a combination of two: Keras
and TensorFlow that can be used with succes to build a
neural network for the automatic intelligent recognition of
microfossils.

TensorFlow is an end-to-end open-source platform, a
library for multiple machine learning tasks, while Keras is a
high-level neural network library running on TensorFlow.
Both provide high-level APIs used to easily build and shape
models, but Keras is easier to use because it has built-in
Python.

TensorFlow is generally used when working with large
data sets used to detect objects with excellent success rates

and high performance. TensorFlow runs on Linux, MacOS,
Windows and Android. The framework was developed by
Google Brain and is currently used for Google‘s research and
production needs.

Keras works as a cover for the TensorFlow frame. Thus, we
can define a model with the Keras interface, which is easier
to use, then we will access TensorFlow when we need to use
a feature that Keras does not have or we want to use specific
TensorFlow features by placing the TensorFlow code directly
in the Keras training model.

ACKNOWLEDGMENTS
The author wishes to express his special thanks to Dr.

Mihaela Melinte-Dobrinescu for providing literature and
useful comments on an earlier version of the manuscript.
Also, I wish to express my gratitude to Dr. Eliza Anton for
helping review this article before its final form.

The financial support of this paper was provided by the
Ministry of Research, Innovation and Digitization through
Program 1 – PN III – Research of Excellence, Project PFE
23/30.12.2022 AMBIACVA.

REFERENCES

Brasier, M.D. (1980). Microfossils. Brief overview of major groups of

microfossils. Simple drawings of each kind of microfossil. George

Allen & Unwin, London, 193 p.

Cui, X., Qiao, T., Zhu, M. (2019). Scale morphology and squamation

pattern of Guiyu oneiros provide new insights into early

osteichthyan body plan. Scientific Reports, 9(1): 4411-4423.

ehrenBerg, C.g. (1836). Bemerkungen ueber festemikroskopische

anorganische Formen in den erdigen undderben Mineralien.

Königl Press. Akad. Wiss. Berlin, 84-85.

FawaD Malik (2021). Top 5 Open Source AI Image Processing Solutions;

Webtech Solution Blog.

haQ, B. u., BoersMa, a., eDs. (1978). Introduction to Marine Microfossils.

Elsevier New York, 376 p.

syDorenko, i. (2021). What Is TensorFlow? Review, Definition, Usage, &

Implementation; LaberYourData.

MelinTe, M. C. (2004). Calcareous nannoplankton, a tool to assign
environmental changes”. Geo-Eco-Marina, 9-10: 17-25.

BroCklehursT, r.J., sChaChner, e.r., sellers, w.i. (2018). Vertebral
morphometrics and lung structure in non-avian dinosaurs. Roy.
Soc. Open Sci. 5(10): Art. No. 180983.

saraswaTi, P.k., srinivasan, M. (2016). Micropaleontology: Principles and
Applications. Springer Switzerland, 223 p.

TaPPan, h. (1980). Haptophyta, Coccolithophores and other calcareous
nannoplankton. The Paleobiology of Plant Protista. Freeman San
Francisco, 678-803.

ThiersTein, h.r., young, J.r. (2004). Coccolithophores: from Molecular
Processes to Global Impact. Springer Berlin Heidelberg, 565 pp.

www.wikiPeDia.org/wiki/PyTorCh – Wikipedia “Pytorch”

www.oPenCv.org/aBouT – “About OpenCV”

www.TensorFlow.org – “Why TensorFlow”

