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1. INTRODUCTION

In the last ten years of the XXth century many mines were 

closed in Europe, starting in Western and Central European 

countries, and followed by Eastern European countries 

which joined the EU. Europe’s intention was to protect 

its environment, the rivers and the seas from undesired 

pollution caused by sometimes uncareful exploitation and/or 

by natural transformation of minerals exposed to weathering 

by mining works. It was believed that the natural demand for 

metals and other natural mineral resources could be satisfied 

in the future by imports from very rich deposits located on 

other continents (Constantinescu and Atanasiu, 2017).

The necessity to inform the general public and 
governments about the potential risks related to active and 
closed mines was reinforced after the mining accidents of 
Aznacóllar (Spain – 1989), Baia Bare and Baia Borșa (Romania 
– 2000). The concern about the cross-border effects of such 
events led to the approval of a new Directive of the European 
Parliament and of the Council on the management of waste 
from extractive industries in 2006 (2006/21/EC). This requires 
that the Member States make inventories of closed mining 
facilities that might cause threat to the environment and 
human health within a defined time period. 

A great deal of information exists in countries of the 
European Union regarding active and closed mining facilities. 
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This information is often not homogeneous and lacks 
standardization in terms of parameterization, formats and 
geographical reference systems and can be outdated and 
scattered between different users and owners (Sommer, 
2004). The completion by detailed geochemical investigation 
and the integration and the harmonization of data at country 
level in order to assess the areas at risk is a time-consuming 
task, implying increased costs for the responsible ministries 
and national organizations/agencies in charge of this. 
Harmonizing the information at European level could be a 
very difficult task because of gaps and inconsistencies. 

In this paper we propose a way of making up risk 
inventories at national level by providing a uniform, 
standardized base layer at European level of areas which 
present high concentration in iron oxides and secondary 
alteration minerals characterized by the hydroxyl-metal 
bond. These areas correspond to accumulation of mining 
wastes, landfills from various industries and sites with high 
concentration of gaseous/particle emissions. Identifying 
these areas on satellite images of medium spectral and spatial 
resolution (Landsat Thematic Mapper TM/Enhanced Thematic 
Mapper ETM) represents the most cost-effective solution for a 
rapid screening of zones characterized by an intense mining 
and/or industrial polluting activity at regional or country 
level. It allows the identification of areas where the mining 
dumps from closed facilities have already been remedied and 
vegetation has begun to grow again, emphasizing that the 
existing data are outdated. This method allows the detection 
of industrial sites that are emitting high levels of gaseous/
particle emissions in the surrounding environment. This way 
a prioritization of the areas where detailed geochemical and 
other type of investigations are necessary in order to perform a 
risk assessment analysis can be obtained. The costs at national 
scale are reduced by concentrating the sample collection and 
ground/laboratory assays only to these highly “anomalous 
areas” that are previously identified on satellite images.

The uniform and standardized, georeferenced layer 
of remote sensing based anomalies showing the areas 
enriched in iron oxides (FeOx) and hydroxyl-bearing (OH) 
secondary alteration minerals, indicating accumulations of 
mining-originated waste material, could serve as the basis for 
checking, updating and filling information gaps in national 
mining inventories across the European continent. The FeOx 
and OH anomalies are obtained by processing Landsat TM 
images with a method based on Principal Components 
Analysis (PCA), a method applied for mineral exploration with 
success (Crosta and McMoore, 1989, Louglin, 1990, 1991). 
These anomalies are even better suited for mapping mining 
wastes due to the larger quantity of exposed material than in 
the case of rock outcrops and subtle hydrothermal alteration 
features for which it is currently applied. Basically, the iron 
oxides are mapped based on the difference in reflectance in 
the Thematic Mapper pair bands TM1-TM3, while hydroxyl-
bearing minerals are mapped by exploiting differences in 
TM5-TM7. 

In this study we describe the method originally developed 
for exploration geology and adapted to be applied at a pan-
European scale on full satellite frames in an operational way. 
Three big areas in Central and Eastern Europe within Poland, 
Slovakia and Romania were used for testing and applying the 
method. 

2. STUDY AREA AND DATA SETS

2.1. Geographical setting 

The study area is covered by a series of 8 multi-temporal 
Landsat TM/ETM scenes, making up a total of 20 analyzed 
images and representing a surface of approximately 
213000 sq km (Fig. 1). The frame scenes were selected in order 
to include zones with known mining activity of diverse origin 
(volcanic, metamorphic, and sedimentary) in Central and 
Eastern Europe. 

The area of interest in Poland is Upper Silesia, containing 
waste from base metals (Zn and Pb) and hard coal. Often, 
the waste from many closed mines was deposited in landfills 
together with waste from other industries and/or municipal 
waste. The region is the most industrialized area of the 
country and numerous geochemical studies for investigating 
the soil contamination with heavy metals have been carried 
out (Lis and Pasiezna 1995a, 1995b, 1995c, 1999a, 1999b in 
Kasinsky and Gientka, 2004). 

The selected area in central Slovakia, covering just over 
two-thirds of the country’s surface area, includes most 
of the mines (brown coal and lignite, metallic minerals, 
industrial minerals) and open-pits for construction materials 
in Slovakia. Since 1990 detailed inventories of existent and 
old abandoned mining sites have been done, and a system 
of evaluation and monitoring the mining impacts for 
selecting the sites to be remedied has been designed and is 
in implementation phase (Jánová and Vrana, 2004). 

The four scenes selected for Romania are located in the 
regions of Maramureș, Central and Western Transilvania and 
Northern Oltenia and include mines for bituminous coal, 
lignite, iron, manganese, copper, base metals (Cu, Pb, Zn), 
gold, mercury and molybdenum. To these there are added 
facilities for extracting and processing salt, kaolin, calcite, 
bentonite, feldspar and talc. Shortly after the beginning 
of economic restructuring process of the mining sector in 
the 1990s, provisions for the establishment of a national 
integrated monitoring system of the environmental quality 
have been included in the National Environmental Protection 
Strategy and the National Environmental Action Plan (Veliciu 
and Stratulat, 2004). 

On the whole, the study area is morphologically extremely 
varied, including plains, plateaus, hills and mountains. The 
highest peaks are Gerlachovský štít (2654 m) in Tatra Mts. and 
Pietrosu (2305 m) in the East Carpathians, while the lowest 
elevations are around 100 m. 
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The dense forest cover (coniferous, mixed, and deciduous) 
is a general characteristic in all three countries. On plains, hills 
and plateaus, between forests patches of various sizes, arable 
lands alternate with pastures, grasslands, orchards and to a 
lesser extent vineyards. The climate is temperate continental 
with warm and dry summers, while the winters are usually 
wet and cold. 

2.2. Data

The processed remote sensing data consisted in Landsat 
TM and ETM images, dated 1985 to 2000. While the main bulk 
of the more recent images originate from the IMAGE2000 
database of the Institute of Environment and Sustainability 
of the Joint Research Centre, others were especially acquired 
within the framework of Pecomines1 project. For checking the 
remote sensing anomalies we used all data and information 
made available by our partners in the Steering Committee of 
the Pecomines1 project (Table 1).

3. METHOD

3.1. Mapping mining material with Landsat TM /ETM

Numerous laboratory spectral libraries of minerals and rocks 
have been built since the 1970s (Hunt and Salisbury, 1970, 1971, 
1976a, 1976b; Hunt et al., 1971a, 1971b, 1972, 1973a, 1973b, 
1974a, 1974b), some of them (United States Geological Survey, 
Jet Propulsion Laboratory etc.) integrated in commercial image 
processing packages. While there are minerals that present 
diagnostic spectral features in the laboratory, rocks, which are 
an aggregation of minerals, can only be inferred indirectly by 
detecting spectral features. In most cases they are caused by 
hydroxyl, carbonate, water and borate vibrational overtones 
and combination tones, or by electronic transitions in metallic 
cations. Often the dominant features belong to an accessory 
mineral or impurity (Hunt, 1980). 

In the mining activity, the useful mineral is almost always 
associated with other minerals, which occur in much more 
significant quantities. 

Fig. 1. Study area (Landsat TM/ETM frames in Poland, Slovakia, and Romania).
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For example, in the case of sulphide ores (Cu, Zn, Pb 
etc.), pyrite is always prevalent and gives birth to secondary 
minerals (oxides, hydroxides, hydrated sulphates etc.) by 
weathering.  Another source for their origin can be direct 
precipitation from the water transporting the soluble metallic 
ions (Swayze et al., 1996). While pyrite and most other 
sulphides are generally opaque and have low reflectance 
values, the secondary minerals (jarosite, ferrihydrite, goethite, 
hematite, and limonite) have higher reflectance values and 
some distinct features caused by the iron ion (Fig. 2). These 
features can be large absorptions between 0.7 and 1 mm 
(like in jarosite, limonite) or steep falloff of the reflectance 
towards the blue region (like in hematite, goethite, jarosite, 
ferrihydrite). Furthermore, there are absorption features due 
to hydroxyl or water (such as in jarosite, ferrihydrite, limonite   
Fig. 2) in the infrared region corresponding to Landsat TM 
band 7. 

The areas with accumulations of mineral deposits of 
hydrothermal origin are usually characterized by haloes of 
alteration of different degrees, leading to the formation of 
secondary minerals, some of them exhibiting more or less 
intense absorptions features in TM7 band, due to metal-

OH vibrations bonds (Fig. 3). These minerals also present 
absorptions due to iron of various intensities or falloff of 
reflectance in the visible range, depending on the level of 
the Al and Mg substitution by Fe. Consequently, the waste 
generated by mined hydrothermal deposits can be identified 
with Landsat TM imagery based on the specific spectral 
features caused by a combination of iron oxy-hydroxides and 
OH-bearing secondary alteration minerals. 

In a vast majority of cases, it is possible to distinguish 
between assemblages of weathering and secondary 
alteration products that make up the crust of deposited mined 
material and bare agricultural fields by applying specific 
image processing techniques, even to imagery with medium 
spectral resolution such as provided by the Landsat Thematic 
Mapper sensor. An average soil spectrum made up of 25 
spectra available in ENVI 4.3 image processing system from 
John Hopkins University Spectral Library shows differences 
from the spectra of secondary alteration minerals (Fig. 3) and 
also from the spectra of pyrite weathering products (Fig. 2). 
Sometimes it can be closer in the visible range to some of 
the iron oxides and hydroxides, generating in these cases a 
similar spectral response which needs to be filtered out.

Table 1. Data types used for verification of the remote sensing anomalies 

Data description Original format Scale or resolution Source

mining sites

GIS 1:50,000 Institute for Ecology of the Industrial Areas in Poland (IETU – PL)

GIS
1:50,000
1:10,000

Ministry of Environment of Slovak Republic (ME – SK)

paper 1:50,000 Geological Institute of Romania (IGR – RO)

open pits GIS
1:50,000  
1:10,000

ME - SK

landfills GIS 1:50,000 IETU – PL

old mining dumps GIS
1:50,000  
1:10,000

ME - SK

potential contaminated sites GIS 1:50,000 IETU – PL

geology

GIS 1:50,000 Polish Geological Institute (PGI – PL)

paper
1:200,000  
1:50,000

IGR - RO

paper 1:500,000 Geological Survey of Slovak Republic (SGUDS – SK)

hydrogeology GIS 1:50,000 PGI - PL

metallogeny paper 1:200,000 IGR - RO

mineral resources paper
1:1,000,000  
1:200,000

IGR - RO

soil paper 1:1,000,000 IGR - RO

topography paper 1:50,000 National Mapping Agencies in SK and RO

CORINE Land Cover GIS 100 m European Environment Agency (EEA)

Catchment Characterization and 
Modeling database (CCM)

GIS 250 m Database of the European Commission
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A great variety of environments contain pyrite distributed 

in large amounts as an accessory mineral. It can also be 

found in coal beds and when exposed by mining, comes into 

contact with water and oxygen, thus generating weathering 

products and acid mine drainage. This situation is like that of 

sulphide ore deposits. 

There are cases where pyrite is not associated with mineral 
ore deposits (for example, iron, manganese and magnesium 
carbonates: siderite, rhodochrosite and magnesite in Fig. 4). 
By weathering and other reactions of associated minerals, 
limonite and hematite (for siderite), psilomelan and pyrolusite 
(for rhodochrosite) and brucite (for magnesite) are generally 
produced. 

Fig. 2. Reflectance spectra of pyrite and the products of its weathering in the Landsat TM spectra (ENVI USGS spectral library).

Fig. 3. Reflectance spectra of secondary alteration minerals in the Landsat TM spectra (ENVI USGS spectral library).
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The waste from these mined deposits can be mapped 
on Landsat TM images due to the spectral features in 
the visible wavelengths of the Fe and Mn ions (siderite 
and rhodochrosite), or high reflectance combined with 
the specific carbonate bands at wavelenghs longer than 
2.0  μm (for magnesite and occurring often in brucite, as a 
contamination with the former – Hunt et al., 1971a). In this 
case it is worthwhile noting the difference between the 
average soil spectrum and the spectra of ores and weathering 
products. 

Mapping mining wastes at a regional scale by means of 
Landsat TM requires differentiating between the material 
having a higher reflectance and more pronounced spectral 
features in the visible and infrared than common soil types 
and those with a lower reflectance and subtle features, 
characteristic of many opaque compounds formed by 
processing coal and metallic ores. Nested between these 
two situations is the general spectral response of soil. Where 
local particularities (i.e. enrichment in iron oxides and clay 
minerals) are present, solutions should be found with image 
processing techniques for distinguishing between these 
particular soil types and mining material. 

A screening of mining waste material at regional scale 
requires achieving a compromise between the sizes of 
the area covered, remote sensing data availability, work 
costs, processing speed and ground truth data availability. 
Hyperspectral remote sensing is, as an example, unsuitable 
for country-wide coverage and the complex processing 
methods (i.e. feature mapping/absorption maps, full spectral 
mapping), require sophisticated procedures and a concrete 

knowledge of the field sites and spectroscopy. Mixture 

modeling methods, as another example, are also difficult 

to implement because they are fitted when the surface is 

dominated by few spectrally distinct components that exhibit 

continuous changes in relative mixing ratios across the scene. 

As a compromise, Thematic Mapper data that is processed 

with a statistical-based method such as Principal Components 

Analysis (PCA) can be applied in a relatively straightforward 

manner and is very effective for the identification of regional 

similarities and differences in surface spectral properties 

(Mustard and Sunshine in Rencz, 1999). 

In this paper we used a PCA-based variant, namely FPCS 

(Feature-Oriented Principal Component Selection), initially 

proposed by Crosta and McMoore (1989) and later developed 

and modified by Loughlin (1990, 1991). By subsetting the 

total number of spectral channels in order to maximize the 

variance due to a set of absorption features, a spectral basis 

is assigned to the simple statistical transform. We first applied 

the method as modified by Louglin (1991) on atmospherically 

and geometrically corrected Landsat TM/ETM scenes and 

subsequently adapt it for use in an operational mode (Fig. 5). 

The advantages consisted in: i) the possibility of applying the 

same methodology to scenes acquired in different regions 

and during different seasons; ii) the possibility to derive filters 

based on reflectance values for filtering out non-mining 

related anomalies, caused by the broad spectral and spatial 

resolution of TM/ETM data.

Fig. 4. Reflectance spectra of Fe, Mn and Mg ore minerals and weathering products in the Landsat TM spectra (ENVI USGS spectral library).
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3.2. Image preprocessing

The preprocessing consists in radiometric corrections, 
geometric corrections and applying a cloud mask when 
necessary. The radiometric corrections implied correcting the 
signal for the “at-satellite radiance” and for the atmosphere-
induced effects based on a modified 5S model “Simulation of 
Satellite Signal in the Solar Spectrum” created by Tanré et al. 
(1990) with later improvements (Hill, 1993; Lacaze et al., 1996; 
Hill and Mehl, 2003). It was not possible to compensate the 
obtained estimated ground reflectances for the topographic 
effects too, since no digital elevation model of a satisfactory 
spatial resolution, compatible to Landsat imagery, was 
available at the time of processing the scenes.

The geometric correction of the Landsat images was 
implemented using a program whose advantage lies in 
speeding up the tedious routine work of ground point 
recognition and selection by a factor of six. It employs a 
procedure for selecting the ground control points (GCPs) 
in a semi-automated manner based on three initial GCPs 
and the cross-correlation computed between the image 
to be corrected and a reference image at selected roughly 
estimated coordinates (Hill and Mehl, 2003). This way more 
than 100 GCPs were obtained for each of the investigated 
Landsat-TM scenes, the final root mean square (RMS) of the 
applied polynomial order 2 transformation being less than 
0.3 pixels. 

A cloud mask was sometimes necessary since the clouds 
are also mapped in the principal components of interest 
because of their difference in reflectance in the band pairs TM1-
TM3 and TM5-TM7, and thus appear as anomalies. The clouds 
should therefore be masked as no-data values and excluded 
from the image statistics prior to running the PCA-based 
method. An algorithm capable of perfectly masking all types 
of clouds, including very thin and transparent ones, is not yet 
known in the remote sensing literature. In the situations where 

it was needed, a cloud mask was tested using a combination of 
Normalized Difference Vegetation Index (NDVI) and TM6. The 
results were good for dense clouds. 

Similar results were obtained with a cloud mask made 
by thresholding one of the principal component images 
(using the bands 1,4,5,7 for mapping the hydroxyl features), 
selected by its highest loading in TM1. However, neither 
method was able to mask the very thin clouds. The remaining 
cloud-induced anomalies were eliminated in a later phase of 
validation and data integration. 

3.3. Mapping mining wastes by operating Principal 
Components

The method takes over the development introduced 
by Louglin to the method of “Feature-Oriented Principal 
Components Selection - FPCS” proposed by Crosta and 
McMoore (1989), for the purpose of obtaining one single PC-
image for FeOx and one PC-image for OH-bearing minerals. 
This implies performing one PCA on the TM bands where 
FeOx minerals have diagnostic features (1, 3, 4, and 5) and 
avoiding TM7 where OH-bearing minerals show absorption 
features. A second PCA was applied using TM bands (1, 4, 5, 
and 7) and avoiding TM3 (Fig. 6).

The principal components (PCs) which yielded the 
FeOx-image and OH-image were selected on the basis of 
the eigenvectors matrix using the criteria introduced by 
Loughlin (1991). For mapping iron oxides the pair TM1-TM3 
was examined looking for the high or moderate magnitudes 
in both and opposite sign. The sign of the respective 
eigenvector in TM3 determined whether or not the iron 
oxides would be distinguished on the image as bright or dark 
pixels. If the sign was positive, the iron oxides formed the 
brightest areas on the image, as there is a raise in reflectance 
in TM3 compared to TM1. If the sign was negative, the image 
had to be negated. 

Fig. 5. Processing chain of Landsat-TM (ETM) scenes, proposed for a pan-European scale operational mode.
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For the image of OH-bearing minerals the TM5-TM7 
pair was examined and the selected PC was the one having 
highest loadings and opposite signs in these bands. The sign 
of the loading in TM7 was fundamental to the brightness 
of the areas rich in these minerals because it showed the 
absorption in TM7 compared to TM5. If the sign was negative, 
it means that the materials having this absorption band in 
TM7 and greater reflectance in TM5 would appear on the 
image as bright pixels. If the contribution of TM7 was positive, 
then the image should have been negated.

Steps 1 to 3 in the processing chain depicted in figure 6 
were followed according to Louglin (1991). Our modifications 
started from step 4 onward, by transforming the selected PC-
image to a thematic layer. Four classes were assigned to the 
Fe-PC4 (Fig. 7): 1 – low, 2 – medium low, 3 – medium high, 
4 – high.

The verification (step 5) of the level-sliced PC4-image of 
Fe for the first test image (scene 185/27 dated 09.08.1998) 
showed a good mapping of known mining-related features 
(open pits, tailing ponds, waste rocks, even very small ones 

from underground mining, ore processing plants), all these 

being highlighted by the class richest in iron oxides (class 

4). However, maximum values were also shown in grassland 

areas, alpine pastures and many bare fields in agricultural 

land. The significant loading of TM4 in PC1 (Table 2) led to the 

idea that the vegetation is expressed as bright pixels in PC1, 

which is also responsible for the overall albedo. This is indeed 

the case for forest, which covers a big part of the above-

mentioned satellite scene. As some classes of vegetated 

pixels were mapped into the selected Fe PC4, it was necessary 

to remove the non-mining-related anomalies. 

In the covariance matrix of eigenvectors, PC3 was 

selected due to the high loadings of both TM1 and TM3 

although the sign was identical. Negated similarly to Fe-

PC4, this component highlighted the same mining-related 

features and showed the grasslands and alpine pasture as 

minima, being little sensitive to the bare agricultural fields. 

Instead, turbid water (and when present, clouds, smoke) were 

shown as maximum due to their higher reflectance in TM1.

Fig. 6. Processing chain for the OH-FeOx anomaly image.
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By overlaying the level-sliced components Fe-PC3 and Fe-
PC4 using the minimum class as criterion (step 6), the pixels 
classified as being anomalous in grassland and pastures and 
most of turbid water were removed successfully. The resulting 
image shows the areas where both iron PCs are the highest 
as being the brightest pixels and was subsequently input into 
a matrix combination together with the OH-image that was 
obtained from PC4 of TM bands 1, 4, 5, 7 (Table 3).

The OH-image classification was sliced into 5 categories, 
the first three in an identical way with those used for the Fe-

PCs. The last two levels represent a further differentiation of 

the brightest pixels: 

• a first group consisting of 2-3 series of brightness values 

with higher frequency distributed immediately after the 

limit μ + 2σ (class 4);

• the rest of the pixels with higher brightness values but 

lower frequencies, more largely distributed up to the 

value of 255 (class 5). Their cumulated frequency is 

greater than that of class 4.

Fig. 7. Level-slicing of Fe PC-images based on mean, standard deviation and histogram.

Table 2. Covariance eigenvectors for TM bands 1, 3, 4, 5 (Landsat-TM image 185/27)

TM1 TM3 TM4 TM5 Eigenvalue Variance (%)

PC1 0.131 0.149 0.816 0.543 4004.41 93.34

PC2 0.307 0.454 -0.551 0.630 238.96 5.57

PC3 -0.670 -0.487 -0.161 0.537 41.57 0.97

PC4 0.663 -0.732 -0.068 0.143 5.32 0.12

4290.26 100.00

Table 3. Covariance eigenvectors for TM bands 1, 4, 5, 7 (Landsat-TM image 185/27)

TM1 TM4 TM5 TM7 Eigenvalue Variance (%)

PC1 0.130 0.807 0.539 0.205 4085.19 93.46

PC2 -0.267 0.573 -0.613 -0.474 249.65 5.71

PC3 -0.911 -0.088 0.390 -0.098 30.42 0.70

PC4 -0.285 0.115 -0.426 0.851 5.72 0.13

4370.98 100.00
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This differentiation served as a control measure of anomalies 
(transition between high OH classes) when analyzing time-
series satellite scenes.

The output of the matrix combination was an anomaly 
image based on a combination of OH-FeOx images, 
highlighting the zones showing iron staining (characterized 
by a raise in reflectance in TM3 compared to TM1) with various 
levels in secondary alteration minerals (containing metal-OH 
bonds producing absorptions in TM7 relative to TM5). These 
zones corresponded well with mining-related features from the 
CORINE Land Cover database (CEC, 1993), national databases 
or thematic paper maps. Detailed inspection revealed however, 
that there might be mining dump sites and open-cast mines 
which were partially or totally omitted as anomalies. The 
image-derived spectra at these locations showed a flat spectral 
curve or even a decrease in reflectance in TM3 compared to 
TM1. These areas corresponded to the highest class in both 
Fe-PC3 and OH-PC4, but lower classes in Fe-PC4. Therefore, a 
subsequent matrix combination was done using as inputs the 

OH-FeOx above-mentioned anomaly image and class 4 of Fe-
PC3. It resulted an anomaly image with 20 classes of interest 
(legend on Fig. 8) representing the combination of the highest 
class (Fe-PC3) with all classes of Fe-PC4 and OH-PC4. From these 
results, classes 1 to 8 mainly represent oxidation and are poor 
in OH, while the classes of interest for the topic of mining waste 
are those rich in OH and rich in iron (Fe-PC3), with different 
levels of iron staining (Fe-PC4), i.e. classes 13 to 20. 

A better mapping of mining-related features was 
obtained this way as assessed both visually by cross checking 
against ancillary data and by statistical computation of the 
anomalous pixels corresponding to known mining objects 
(open-cast mines, waste rocks, dump sites, tailing ponds 
etc.). Figure 8 presents an example of the visual check 
performed where the image-derived spectra on Landsat-TM 
185/28 dated 25.09.1992 at three locations situated inside 
the porphyry-copper opencast mine of Roșia Poieni, (spectra 
1, 2 and 4) and on its associated tailings pond Valea Șesii 
(spectrum 3) in the Apuseni Mts., Romania, are shown. 

Fig. 8. Image-derived spectra (Apuseni Mts., Romania), showing the difference in highlighting mining-related features between the two Fe PCs. 
Yellow polygons on the image represent mineral extraction sites (CLC database).
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This mine is recognized by the national authorities in 
Romania for its acidification problems (Veliciu and Stratulat, 
2004). In the intermediate anomaly image only spectrum 
2 corresponds to OH-FeOx anomalies (maximum in both 
Fe PCs). Spectra no. 1, 3 and 4 show large absorptions in 
TM3 that extend up to 1.5 μm and can also occur in mining 
material (pointed out by maximum in Fe PC3).

 3.4. Filtering anomalous pixels

The best possible mapping of mining material by a 
simple and straightforward procedure implying operations 
with selected PCs of Landsat TM (ETM) bands was achieved 
so far after performing step 6 (Fig. 6). The rather wide spectral 
bandwidths of Thematic Mapper determined that in the 
selected Fe and OH PCs, some pixels that are not mining-
related were also mapped in a similar way to mining material. 
Such pixels represent mainly bare soils on agricultural land 
and turbid/eutrophic water and most of them have been 
reintroduced by the combination with Fe-PC3 (class 4).

Some filters were created to reduce these anomalies 
without affecting the anomalies in mining objects. These 
filters were developed based on reflectance values in 
atmospherically corrected TM (ETM) bands for turbid/
eutrophic water and for soil. 

3.4.1. Filtering anomalous pixels in turbid/eutrophic water

The approach for filtering out the anomalous pixels in 
turbid/eutrophic water was to identify all water bodies/
courses and then to exclude them from the desired class 
representing turbid water with suspended minerals in the 
tailing ponds. It did not matter that water bodies and rivers 

that were not highlighted by anomalous pixels were also set 
to zero. To map all water bodies, the reflectance values in 
TM5 and TM1 were exploited by stretching the 0-255 digital 
number scale to a range from 0-100%. 

The pixels having TM5 <= 5% reflectance (13DN) and 
TM1 >= 1% (3DN) were selected, the latter in order to exclude 
shadowed pixels on deep slopes. From this group of pixels, 
we excluded those having TM3 >= 10% (26 DN). These 
conditions were satisfactory for efficiently filtering out most 
of the anomalous pixels in water (Fig. 9) and maintaining 
the water with suspended minerals characteristic for tailing 
ponds.

3.4.2. Filtering anomalous pixels on agricultural fields

Agricultural land can generate a number of anomalous 
pixels that generally represent a small proportion of the 
entire agricultural surface in one satellite scene: a couple of 
percentage points according to statistical analysis for Poland, 
Slovakia and Romania. However, there are cases when these 
anomalies can cover a whole parcel, being similar or even 
greater (when summed up) than the anomalies highlighting 
mining-related features (small dumps or waste rock piles, tiny 
tailing ponds) and therefore need to be filtered out.

We analyzed the distribution of anomalous pixels in 
agricultural land using the CORINE LC database as a reference 
and separating three categories based on NDVI values within it:
• Predominant bare soils NDVI <= 0.15
• Mixtures soil-vegetation 0.15 < NDVI < 0.5
• Predominant vegetation cover NDVI >= 0.5

Fig. 9. Image-derived spectra for water (ETM 189/25, 14.05.2000) showing the types of features filtered out and preserved.
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Table 4 shows the percentage distribution of anomalies 
in the above-mentioned categories for agricultural land, as 
well as for the rest of the land cover classes grouped together 
as “others” and including mining-related features, artificial 
surfaces, forests and other natural vegetation areas, water 
bodies etc., classified only according to the NDVI thresholds. 
The table refers to average values computed for these two 
main categories taking into account four satellite scenes: 
ETM 189/25 (14.05.2000), ETM 188/25 (07.05.2000) covering 
southern Poland and parts of Czech Republic (Upper Silesia), 
184/29 (15.10.1990) and 185/28 (25.09.1992) in South-West 
and West Romania.

Anomalies on agricultural areas with predominant 
vegetation cover represent a small percentage of the relative 
area (2.3%), although, depending on the season, the number 
of anomalous pixels can be high. These anomalies might 
be caused by mixed pixels, where the radiance from soil 
determines a high value in sensor bands 3 and 1 (Fig.  10), 
while the green plants are responsible for a very high value 

in the near infrared (band 4). The NDVI of these areas is 
higher than 0.5 and we filtered out this type of anomaly by 
applying the threshold. Once more, the fact that other types 
of vegetation with higher NDVI, such as forests (mapped in 
the low-order PCs, therefore cause no problems), was set to 
zero, was of no relevance for our study. 

A higher percentage of anomalies are found on 
predominantly bare soils (31.6%) and, to a lesser extent, 
on mixtures of soil-vegetation (sparse vegetation – 3.4%). 
Filtering them out was a more difficult task due to the 
similar response of soils rich in iron oxides (coupled with rich 
carbonate or clay content) to the spectral features of some 
of the host rock of open-cast mines or quarries. A perfect 
discrimination is impossible to achieve using Landsat TM 
or ETM exclusively. This filter was designed to compromise 
between filtering out a maximum number of anomalous 
pixels on the bare soils, while keeping the high oxidation 
features (significant raise in TM3 compared to TM1) and the 
flat spectral features (close values in TM1 and TM3). 

Table 4. Distribution of anomalous pixels before and after filtering

Area 
(%)

Anomalous 
pixels (%)

Proportion of 
area causing 

anomalies (%)

Proportion of area 
causing anomalies, 
after filtering (%)

Relative decrease 
of anomalous pixels 

after filtering (%)

Agriculture

Predominantly bare 3.8 26.1 31.6 9.5 68.5

Mixed 44.5 39.4 3.4 1.8 44.1

Predominantly vegetated 51.6 34.6 2.3 0 0

Other

Predominantly bare 3.2 38.9 32.5 26.4 18.5

Mixed 15.2 50.6 8.8 8.0 12.0

Predominantly vegetated 81.6 10.4 0.3 0 0

Fig. 10. Image-derived spectra of vegetation (ETM 189/25, 14.05.2000) showing the vegetation type filtered out from the OH-FeOx anomaly image.
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The following conditions applied: (TM3 – TM1) > 5% 
reflectance (13 DN) combined with TM1 <= 20% reflectance 
(52 DN) and applied to the OH-FeOx anomaly classes where 
the contribution from Fe-PC4 was different from class 4  
(the highest). The filter worked well for all the processed 
scenes (ETM and TM) acquired in different seasons (Fig. 11 
and Table 4). The biggest reduction in non-mining related 
anomalous pixels was indeed for the areas labeled as 
“predominantly bare soil” and, to a lesser degree, for the 
“mixed soil-vegetation” areas (table 4). After the filtering 
process, the greatest proportion of anomalies (relative to the 
respective area) remained in the category “Other”, artificially 
“predominantly bare” land (where mining-related features 
are included), followed by the mixed artificial-vegetated 
areas (Table 4).

4. RESULTS AND DISCUSSIONS

4.1. Cross-checking with national data sets

The proposed method was tested on 20 multi-temporal 
scenes consisting mainly of Landsat TM images and some 
ETM scenes from Central and Eastern Europe. For all analyzed 
satellite images the sign of OH-PC4 and Fe-PC4 was consistently 
positive, respectively negative. In three cases, the sign of Fe-PC3 

was different from Fe-PC4 (positive instead of negative). In all 
20 images, following the criteria of the sign stated in Loughlin 
(1991) of negating the respective PC-image when necessary, 
the mining-related features were highlighted as the brightest 
pixels in the image. The spectrally derived filters worked well 
on all scenes. From the multi-temporal case studies it was seen 
that generally the OH-FeOx anomalies occur over time in the 
same area unless significant change happened (Fig. 12, location 
1 – flooding of an open-pit; location 2 – remediation and cover 
of a dump site by vegetation during a longer time period etc.). 
The majority class did not always remain the same due to the 
modifications that take place over time in the surface materials 
and/or mixtures, as shown in the image-derived spectra.

A reduction of the intensity of OH-FeOx anomalies over 
time, indicating a decreasing anomaly class and subsequently 
lower levels of OH-bearing minerals, is observed in the 
example selected for Upper Silesia (Fig.  12). The area is 
approximately 15×15 km and contains waste from coal 
mining, ash from power plant generation, industrial slag and 
mixtures of various industrial and municipal wastes (Kasinsky 
et al., 2007). The same tendency was observed as well in other 
areas with mining activity from Slovakia and Romania. 

Fig. 11. Image-derived spectra of mining wastes and soils (ETM 189/25, 14.05.2000) illustrating the types of spectral features filtered out and 
preserved.
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Fig. 12. Multi-temporal satellite (left) and associated OH-FeOx anomaly images (right) in Upper Silesia (Poland), North-East of Katowice. a) 
Landsat-TM (23.08.1987); b) Landsat TM (21.07.1995); c) Landsat ETM (07.05.2000). CLC 121, CLC 132 – standard nomenclature of CORINE Land 

Cover classes (CLC). Numeration in the figures correspond to the Polish GIS database of landfills.
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This might be explained by the closing of many mines 
in these regions of Central and East Europe after 1990s, the 
remediation of the dumps and the introduction of measures 
for reducing the gaseous/particle emissions of the associated 
industries.

The cross-checking with mining-related features from 
the pan-European CORINE Land Cover database or national 
databases in Poland, Slovakia and Romania, confirmed the 
applicability of the method by correctly identifying the areas 
of open-cast mines, open-pits, quarries, dump sites, tailing 
ponds, smelters and ore processing plants as anomalous 
pixels. It was also possible to map waste material deposited 
in the surroundings of underground mines located in 
forested areas if the exposed surface was at least a couple 
of Landsat-TM pixels size (Vîjdea et al., 2004). For example, 
in the Neogene volcanic area of East Carpathians, Baia Mare 
region (Maramureș county - Romania), the small clusters of 
anomalous OH-FeOx pixels (Fig. 13) were confirmed by the 
detailed geological maps (Borcoș et al., 1980) as rock waste 
piles originated by the underground mines (Pb, Zn, Cu ± Au, 
Ag) of the Ilba-Băiuț metallogenic district. 

Generally, the waste from base metal mines, flotation 
ponds and their processed tailings, dumps or open-cast 
mines with acknowledged acidification problems were 
highlighted as anomalous pixels rich in iron oxides (class 4 
Fe-PC3), high in OH (classes 4 or 5) and with various levels 
of iron staining (materialized by raise in TM3 compared to 
TM1), which corresponded to various levels in Fe-PC4. The 
OH-FeOx anomaly classes for these materials are usually 13 
to 20 (Fig. 8). In the case of rocks that present absorptions in 
TM7 compared to TM5 (limestones, dolomites, clays) in their 
spectra, they are evidenced by high order anomaly classes. 
The open-pits for extracting sand, gravel and the quarries 
for building materials are generally highlighted only by the 
anomaly classes showing mainly oxidation (classes 1 to 8). 

4.2. Statistical analysis of OH-FeOx anomaly 
occurrences

4.2.1. Global distribution of OH-FeOx anomalies

The suitability of the method for mapping mining waste 
sites and associated industrial sites was demonstrated by the 
results obtained when computing the statistical distribution 
of anomalies occurring in various land cover classes. 

Fig. 13. Confirmation of correspondence between anomalous pixels and features related to mining industry by means of 1:50,000 geological map 
(Borcoș et al., 1980) in the area of Ilba-Handal mine (East Carpathians, Romania).
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Figure 14 shows that the mining-related features represented 
by: 1) CORINE classes mineral extraction sites, dumps and 
industrial units (CLC, 1993); 2) mining wastes sites and 
potentially contaminated sites from national database 
(Kasinski et al., 2007); are indeed the classes with the greatest 
percentage of their area highlighted by anomalous OH-FeOx 
pixels. We cannot expect to have a 100% correspondence with 
the surface of the mining-related features, in the way they are 
delimited in the CORINE Land Cover or national databases, 
because these features usually include more objects (shafts, 
tailing ponds, tiny dumps, small processing plants together 
with surrounding more or less vegetated pixels) into a single 
entity (polygon). These polygons represent the respective 
economic unit or several economic units grouped together 
due to a criterion of minimum size of the mapping unit in 
various databases (for example, 25 ha in CORINE CLC – CEC, 
1993).

After the mining-related features, with a lower percentage 
of correspondence of anomaly classes (Fig. 14), come the 
categories of construction sites, transport units (railways, 
ports and airports facilities) and urban areas - all characterized 
by cement/asphalt surfaces, metallic roofs/objects, emissions 
of dust, particles and smoke. Turbid waters and mixtures 
natural vegetation-soil or vegetation-artificial surfaces have a 
smaller percentage of anomalies, and the lowest proportion 
(less than 1%) is found in agricultural areas, forests and 
areas of scrub and/or herbaceous vegetation associations 
(grasslands, transitional woodland-scrub, heathlands etc.- 
CEC, 1993).

The statistical analysis done for Slovakia showed the same 
trend, the biggest proportion of anomalous OH-FeOx pixels 
being found in the mining-related CORINE classes mineral 

extraction sites, dumps sites, industrial units, followed by 
buffered mines, sites for construction materials and dumps 
(Fig. 15). Buffers of a 500 meter radius were built around 
point coordinates of mines (for metallic minerals, coal and 
industrial minerals) and open-pits for extracting building 
materials from the Slovak database. The choice of this radius 
was based on a combination of the Landsat-TM image 
resolution (30 m, resampled to 25 m after the geometrical 
correction); the mapping precision of CORINE Land Cover 
data (100 m); and the minimum area mapping size for the 
CORINE database (25 ha). By choosing a 20 pixels radius we 
could ensure an area three times bigger than the minimum 
mapping unit for the buffered points in order to compensate 
eventual imprecision of locations between CORINE polygons 
and the Slovak database. The scope was to identify the 
correspondence between the two and, in turn, the anomaly 
OH-FeOx images. The spatial dimension of CORINE polygons 
was complemented by the more precise extent of deposited 
material highlighted by the OH-FeOx anomalies, which also 
gave indications about its very broad geochemical nature 
(only oxidized or having suffered secondary alteration). 
Further information such as the mined commodity was 
attributed by the buffered point.

The good selection of the buffer radius was confirmed by 
the fact that more than 53% of the summed area of CORINE 
mineral extraction sites was common to the buffered mining 
features of the Slovak database. To this the number of hits 
between the buffered mines and sites for construction 
materials and the boundaries of the CORINE mineral 
extraction sites (equivalent to 73 hits for 82 polygons, or 89%) 
is added (Vîjdea et al., 2004). 

Fig. 14. Distribution of total anomalous OH-FeOx pixels in CORINE Land Cover classes and national datasets (mining waste sites and potentially 
contaminated sites) in Upper Silesia (Poland)
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A radius of 100 meters was used for buffering the old 
historical dumps of the Slovak database because these 
dumps are generally not visible on the images, being located 
in very dense forest and often below the image resolution 
(the distance between adjoining points less than 25 m).

4.2.2. Differential distribution of OH-FeOx anomalies

The majority of the Slovak database point mining features 
(mines, sites for construction materials and old dumps) are 
located in forests (42.86%, 43.73%, respectively 84.67%) and 
agricultural areas (37.14%, 40.11%, respectively 10.56%). 
There is a correspondence of 12.86% of the mines and 11.14% 
of the sites for construction materials with the CORINE 
mineral extraction sites. However, the interest was in finding 
out how many of the anomalous pixels found out in forests, 
agricultural areas and “areas of scrub and/or herbaceous 
vegetation associations” (which followed with a distribution 
of 2.23% for the sites of construction materials and 2.75% for 
the old dumps) were in reality caused by mining.

The results (Fig. 16) show the highest correspondence 
values for forest, followed by “areas of scrub and/or 
herbaceous vegetation associations” and agriculture. 
Moreover, as we restricted the analysis from all anomaly 
classes (1 to 20 in the legend of Fig.  8) to the highly anomalous 
classes (richest in OH-bearing minerals), i.e. classes 13 to 20, 
and then to the two highest classes (19 and 20) it is seen that 
the proportions increase. The lowest figures are found for the 
agricultural areas and this can be explained by the fact that 
many bare fields are present in this land cover class, some of 
them having a spectral response in Landsat TM bands similar 
with the mining material. The filter described in section 3.4.2 
substantially reduced these types of anomalies, but it could 
not eliminate them completely. However, the same pattern 
of an increase of percentage for highly anomalous classes can 
be noted too.

Fig. 15. Distribution of total anomalous OH-FeOx pixels in CORINE 
Land Cover classes and national datasets (buffered mining 

features) in Slovakia.

Fig. 16. Distribution of anomalous pixels identified in buffered mining features from the Slovak database located in forests, areas of “scrub and/or 
herbaceous vegetation associations” and agriculture, as percentage of the respective OH-FeOx anomalies in the CORINE class.
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The fact that the higher order OH-FeOx anomalies 
are mostly indicative for mining material is once more 
demonstrated by the distribution of highly anomalous 
pixels (classes 13 to 20, Fig. 8) in the main land cover classes 
of the study area in Slovakia and in the buffered mining 
features of the Slovak database. The greatest number of 
these anomalies is found in mineral extraction sites, dumps 
sites and associated industrial units according to the CORINE 
land cover database and in buffered point mining features. 
The results show the same trend when the anomalies were 
computed both as percentage of the mapped area in the 

respective land cover class (Fig. 17a), and as percentage of 
the total anomalous pixels of that class (Fig. 17b).

The OH-FeOx classes representing mainly oxidation (classes 
1 to 8, Fig. 8) show the same distribution when computed as 
percentage of the mapped area of the land cover class (Fig. 18a). 
This was to be expected and it is normal, as it is one of the starting 
hypotheses of our method. However, the pattern is changed 
when the proportion of total anomalous pixels in the respective 
class are taken into account. A quasi uniform distribution of the 
simple oxidation anomalies can be noted across all categories 
(Fig. 18b), with an evident domination in agricultural areas.

Fig. 17. Distribution of highly anomalous pixels (classes 13 to 20) in the main CLC classes and buffered mining features of the Slovak database; 
a) as percentage of class area; b) as percentage of total anomalous pixels of the class
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4.2.3. Mining Anomaly Index

This marked diff erence in the distribution of OH-FeOx 

anomaly classes led to the development of an index for a 

certain type of area reference (catchments, administrative 

units etc.), which characterize the surface for deposited 

mining material.  The proposed formula for the Mining 

Anomaly Index (MAI) is:

The MAI is expressed as percentages of the surface of 
reference (catchments, administrative units etc.) and can 
output values even greater than 100% if the proportion of 
highly anomalous pixels within total anomalies is big. When 
there is no anomaly class between 13 and 20, the index is 
defi ned by the percentage of total anomalous pixels, but the 
value is ten times reduced, thus indicating the presence of 
less hazardous material. 

Fig. 18. Distribution of simple oxidation anomalous pixels (classes 1 to 8) in the main CLC classes and buff ered mining features of the Slovak 
database; a) as percentage of class area; b) as percentage of total anomalous pixels of the class.

 (1)
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An attempt to classify the first order catchments of 
Slovakia (CCM version 1.2) according to the MAI values led to 
the following rough scheme:
• (1) MAI <= 0.5 %, corresponding to the background and 

making up more than 90% of the catchments;
• (2) 0.5 < MAI <= 1;
• (3) MAI > 1.

Figure 19 exemplifies three zones with different mining 
activity (iron, base metals, industrial minerals, coal) and 
where sites from construction materials (both categories 
represented by their point coordinate and buffer) are also 
present. The catchments in the second and third MAI class 
correspond to those with overlaying CORINE mining-related 
polygons (mineral extraction sites, dumps, and industrial 
units), while most of the catchments containing only buffers 
of sites for construction material are classified in the first class 
of no hazard. There was a good global correspondence with 
the sites labeled as being most risky in the national mining 
monitoring system of Slovakia (Vrana et al., 2005). Besides 
known sites, there are also catchments highlighted in the 
second and/or third MAI class, where no evidence of mining 
activity was available, so it might be worthy to investigate the 
cause of OH-FeOx anomalies. 

The proposed classification scheme of catchments 
or other reference surfaces is to be considered in a first 
approach. The most critical factor in the MAI equation (1) 
is the great variation of the area of the reference surface.  
For a very small inter-basin with several highly anomalous 
pixels, a large value of normalized MAI could be obtained. 
The catchments in figure 19 are derived from a DEM of 250 
m resolution, almost 10 times coarser than Landsat TM. 
However, their classification according to the proposed 
MAI is useful for differentiating the catchments with 
deposited mining materials with respect to the extent and 
types of occurring OH-FeOx anomalies. The catchments 
belonging to class 2 and 3 should be subsequently grouped 
according to size and/or other morphological criteria and a 
multiple-criteria decision could be then applied for further 
discrimination. Some of the decision rules could consist, for 
example, in: 1) OH-FeOx anomalies as proportion of the area; 
2) proportion of highly anomalous pixels in total anomalous 
pixels etc. Some other criteria could be added later, such as 
the geology of the host rock, the mined commodity, the type 
of waste etc., for a better source characterization, needed for 
vulnerability studies and risk assessment. 

5. CONCLUSIONS
The study showed that the method proposed for 

mapping mining wastes over large areas by a combination 
of PCs indicating zones enriched in iron oxides and hydroxyl-
bearing minerals gave consistent results for all test sites. 
It is straightforward, semi-automated and can be run in 
an operational way on atmospherically and geometrically 
corrected Landsat TM (ETM) scenes. 

The areas with iron oxides were mapped by a fourth and 
third order PCs. While Fe-PC4 highlighted the mining-related 
features showing raise in TM3 compared to TM1, Fe-PC3 also 
highlighted, due to its identical sign of eigenvector loadings 
in TM1 and TM3, the materials with flat spectral curves in 
the visible range, or even a decrease in TM3 compared to 
TM1. Having greater data variance than the fourth order 
component and high eigenvector loadings in TM3 and TM1, 
this PC3 also mapped the areas of iron staining highlighted 
by the former. 

The combination of these two Fe PCs with OH-PC4 
(pointing out areas with absorptions in TM7 against TM5) 
led to OH-FeOx anomaly images with 20 classes, which 
showed good correspondence with mining-related features 
according to the CORINE land cover database, national 
mining databases, paper maps and other ancillary available 
information. 

Some filters based on reflectance values in atmospherically 
corrected bands to compensate for effects of turbid/eutrophic 
water, mixture soil - vegetation (in a particular phenological 
state) and bare soils were necessary to compensate for the 
coarse spectral resolution of TM/ETM and the presence of 
mixed pixels. Application of the method on regional scale 
therefore requires as imperiously necessary the use of 
atmospherically corrected images.

The suitability of the OH-FeOx anomalies for mapping 
mining wastes was proven through a statistical analysis. The 
maximum percentage of area covered by: 1) all anomaly 
classes; 2) the highly anomalous classes (i.e. 13 to 20 – Fig. 8); 
occur both in the case of mining-related features of CORINE 
land cover and national databases. Furthermore, the highly 
anomalous classes occur with the highest proportion (of total 
anomalies) in the mining-related features. On the contrary, 
the simple oxidation anomalies (classes 1 to 8 – Fig. 8) have 
a uniform distribution in all land cover classes, being by far 
prevalent in agricultural areas (bare soils).

The proposed Mining Anomaly Index, based on this 
observed differentiation of OH-FeOx anomalies, succeeded 
in a rough classification of first order catchments of Slovakia 
regarding the extent and broad type of deposited mining 
material, corresponding to the national mining monitoring 
system (Vrana et al., 2005). This classification can be further 
developed using multiple criteria decision analysis, leading 
to a final risk-based inventory of mining and industrial 
associated contaminated sites.

In view of the present increased demand for metals 
and critical raw materials required by the technological 
developments of the 2020s, when European countries begin 
to reopen their mines, and the new modern techniques 
allow recovering of useful minerals from dumps and tailing 
ponds, the principles of the described methodology could be 
applied on atmospherically corrected images from the new 
satellite sensors, Landsat Operational Land Imager (OLI) and 
Sentinel 2 Multi-Spectral Instrument. (MSI). These satellite 
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Fig. 19. Classification of first order catchments of Slovakia according to the Mining Anomaly Index. Exemplification for three selected areas, 
validated against national mining monitoring system (Vrana et al., 2005). a) Nováky (brown coal mine and power plant); b) Jelšava, Lubeník 
(magnesite); Hnúšťa – Mútnik, Hačava (talc); Tisovec-Čremošné (limestone, dolomite); c) Rudňany – Poráč (baryte, iron and smelter); Smolník 

(iron, copper, antimony); Krompachy (smelter); Gelnica (iron, copper, mercury); Jaklovce (limestone, dolomite).
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