Projects

Recently CCS value chain started considering ships for direct injection, not only transport. The CTS project will evaluate the global potential of this technology for facilitating permanent CO2 storage using case studies from offshore on the Norwegian Continental Shelf, Baltics, Black Sea and Atlantic coast of Portugal. CTS will study the impact of direct injection from ship on the definition of capture clusters and storage facilities by developing CCS scenarios in four different offshore regions in Europe. The efficiency of the scenarios from the perspective of cost and abated CO2 emissions compared to existing plans and scenarios will be evaluated.

One of the project goals is to advance direct ship injection technology further together with NEMO Maritime – the industrial partner developing one of such solutions. Direct ship injection is a flexible and low cost solution that can help accelerate CO2 storage and contribute to reducing emissions already by 2030. CTS aims at improving cost and efficiency along the value chain; developing new markets by better addressing the need of smaller emitters; increasing LCA and TEA knowledge for the value chains in selected areas.

By utilizing offshore storage and building trustful communication with stakeholders in selected geographical locations, CTS also aims to contribute to strengthening the acceptance of CCUS technologies.

The main impact of the project is to provide a technology that will allow to decrease costs, reduce conflicts with other marine activities and increase flexibility for early start of CO2 injection in offshore regions, therefore addressing some of the major issues that can hinder the deployment of CCS in Europe on a scale able to deliver required mitigations before 2030.

The project aims to engage new stakeholders in four offshore regions through versatility, flexibility and cost efficiency of direct CO2 injection from ship for permanent storage. The key outcome is design of a full CCUS value chain including direct injection from ship, with engagement of the stakeholders along it. Creation of a full value chain design will promote stakeholder engagement and create a platform for evaluation of the business cases by individual stakeholders by giving them a realistic scenario to adhere to.

The outcomes should help to increase roll-out of the CCS value chains not only through technological advantages of direct ship injection, but also by reducing the threshold for smaller emitters and unlocking offshore storage potential in sites becoming commercial due to lower capex and opex of direct ship injection. Generally, CTS contribution is to map potential emitters, prepare conceptual design of the value chain with a focus on ship design, wells, and storage site.

 

In the context of the preparation of a CCS project in Romania, this project aims to develop an innovative environmental monitoring methodology for potential CO2 geological storage projects.

This methodology supports storage operators who must implement monitoring in all phases of the storage project, based on the monitoring plan (mandatory according to Law 114/2013 for the geological storage of CO2 in Romania), resulting from the risk analysis.

The innovative methodology will be based on the implementation of geophysical, geochemical and biological methods of environmental analysis to highlight potential CO2 leakages from the storage reservoir. The project will also demonstrate the feasibility of less-used geophysical methods for monitoring the geological storage of CO2. With the testing of the methodology on natural analogues of the geological storage of CO2 for CO2 geological storage, areas with natural CO2 emissions and natural CO2 reservoirs, the project aims to understand the mechanisms that ensure the integrity of a storage site, as well as the mechanisms for migration of CO2 to the surface.

The results of the project will be integrated into a database developed according to FAIR principles.

Pin It on Pinterest

Share This